Math, asked by ParikhAyushi, 4 months ago

QuEsTiOn⬇️



2÷(1/2)-(1/2)÷2+(1/2)(2+1/2)



Don't spam

Otherwise your maximum✖️ answer will reported


Answers

Answered by EliteSoul
95

Question :

Find the value of :

\sf 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(2 + \dfrac{1}{2} \bigg)

Solution :

Here, we will use BODMAS concept .

B → Bracket

O → Of

D → Division

M → Multiplication

A → Addition

S → Subtraction

______________________________

Calculation :

\longmapsto\sf 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(2 + \dfrac{1}{2} \bigg) \\\\ \\ \longmapsto\sf 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg( \dfrac{4 + 1}{2} \bigg) \\\\ \\ \longmapsto\sf 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \times \dfrac{5}{2} \\\\ \\ \longmapsto\sf 2 \times 2 - \dfrac{1}{2} \times \dfrac{1}{2} + \dfrac{5}{4} \\\\ \\ \longmapsto\sf 4 - \dfrac{1}{4} + \dfrac{5}{4} \\\\ \\ \longmapsto\sf \dfrac{16 - 1 + 5}{4}

\longmapsto\sf \dfrac{20}{4} \\\\ \\ \longmapsto\Large\underline{\boxed{\mathfrak{5 }}} \ \bigstar \\\\

\therefore \underline{\textsf{Required value of given expression = {\boxed{\textbf{ 5 }}}}}


amansharma264: Nyccc
EliteSoul: Thanks :)
Answered by Anonymous
145

Required answer -

★ Find the value of the following -

{\tt{\longrightarrow 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(2 + \dfrac{1}{2} \bigg)}}

★ Let's solve this question...!

{\sf{:\implies 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(2 + \dfrac{1}{2} \bigg)}}

To solve this problem we have to use procedure of BODMAS !..

\: \: \: \: \: \: \: \:{\bf{\leadsto B \: denotes \: Brackets}}

\: \: \: \: \: \: \: \:{\bf{\leadsto O \: denotes \: Off}}

\: \: \: \: \: \: \: \:{\bf{\leadsto D \: denotes \: Division}}

\: \: \: \: \: \: \: \:{\bf{\leadsto M \: denotes \: Multiplication}}

\: \: \: \: \: \: \: \:{\bf{\leadsto A \: denotes \: Additional}}

\: \: \: \: \: \: \: \:{\bf{\leadsto S \: denotes \: Subtraction}}

~ When we have to use BODMAS then we have to work according to the denotation always like first solve brackets, then off (×) then others respectively...!

★ Let's do it...!

{\sf{:\implies 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(2 + \dfrac{1}{2} \bigg)}}

  • Let's take LCM first of those digits that are in small bracket..!

{\sf{:\implies 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(\dfrac{4+1}{2} \bigg)}}

  • Now let's solve the bracket..!

{\sf{:\implies 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \bigg(\dfrac{5}{2} \bigg)}}

  • Now let's open brackets..!

{\sf{:\implies 2 \div \dfrac{1}{2} - \dfrac{1}{2} \div 2 + \dfrac{1}{2} \times \dfrac{5}{2}}}

  • Remember we have to work according to BODMAS so now have to solve for division...!

{\sf{:\implies 2 \times 2 - \dfrac{1}{2} \times \dfrac{1}{2} + \dfrac{5}{4}}}

{\sf{:\implies 4 - \dfrac{1}{2} \times \dfrac{1}{2} + \dfrac{5}{4}}}

{\sf{:\implies 4 - \dfrac{1}{4} + \dfrac{5}{4}}}

{\sf{:\implies 4 - \dfrac{5}{4}}}

{\sf{:\implies \dfrac{20}{4}}}

{\sf{:\implies 5}}

{\small{\boxed{\bf{\bigstar{Henceforth, \: 5 \: is \: the \: value \: of \: the \: given \: question}}}}}


amansharma264: Nyccc
Similar questions