Question 2 Determine n if
(i) 2nC3 : nC3 = 12 : 1
(ii) 2nC3 : nC3 = 11 : 1
Class X1 - Maths -Permutations and Combinations Page 153
Answers
Answered by
55
(i) ²ⁿC₃ : ⁿC₂ = 12 : 1
use the concept, ⁿCₐ =n!/a!(n-a)!
2n(2n-1)(2n-2)(2n-3)!/3!(2n-3)! : n(n-1)(n-2)!/2!(n-2)! = 12 : 1
{2n(2n -1)(2n-1)/6}/{n(n-1)/2} = 12/1
{4n(2n-1)(n-1)}/3{n(n-1)}=12
4(2n-1)/3 = 12
2n - 1 = 9
2n = 10
n = 5
(ii) ²ⁿC₃ : ⁿC₃ = 11 : 1
{2n(2n-1)(2n-2)(2n-3)!/3!(2n-3)!}/{n(n-1)(n-2)(n-3)!/3!(n-3)!} = 11 / 1
{ 4n(n-1)(2n-1)/6}/{n(n-1)(n-2)/6} = 11
4(2n -1)/(n - 2) = 11
8n - 4 = 11n -22
8n -11n = -22+ 4
-3n = -18
n = 6
use the concept, ⁿCₐ =n!/a!(n-a)!
2n(2n-1)(2n-2)(2n-3)!/3!(2n-3)! : n(n-1)(n-2)!/2!(n-2)! = 12 : 1
{2n(2n -1)(2n-1)/6}/{n(n-1)/2} = 12/1
{4n(2n-1)(n-1)}/3{n(n-1)}=12
4(2n-1)/3 = 12
2n - 1 = 9
2n = 10
n = 5
(ii) ²ⁿC₃ : ⁿC₃ = 11 : 1
{2n(2n-1)(2n-2)(2n-3)!/3!(2n-3)!}/{n(n-1)(n-2)(n-3)!/3!(n-3)!} = 11 / 1
{ 4n(n-1)(2n-1)/6}/{n(n-1)(n-2)/6} = 11
4(2n -1)/(n - 2) = 11
8n - 4 = 11n -22
8n -11n = -22+ 4
-3n = -18
n = 6
Answered by
13
Answer:
Step-by-step explanation:
2nC3:nC3=12:1
2nC3÷nC3=12
(2n(2n-1)(2n-2)÷6)÷(12×n(n-1)(n-2)÷6)
2(n-1)(n-1)=6(n-1)(n-2)
(2n-1)=3(n-2)
2n-1=3n-6
-1+6=3n-2n
n=5
Similar questions
English,
8 months ago
Environmental Sciences,
8 months ago
Computer Science,
8 months ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago
English,
1 year ago
English,
1 year ago