"Question 2 In the given figure, ∠X = 62º, ∠XYZ = 54º. If YO and ZO are the bisectors of ∠XYZ and ∠XZY respectively of ΔXYZ, find ∠OZY and ∠YOZ.
Class 9 - Math - Lines and Angles Page 107"
Answers
Bisector of an angle:
A ray which divides an angle into two equal parts is called bisector of an angle.
----------------------------------------------------------------------------------------------------
Solution:
Given:
∠x=62° & ∠XYZ=54°
In △XYZ,
∠XYZ+∠YZX+∠ZXY=180∘.
[Sum of interior angles of a triangle is 180∘]
⇒116∘+∠YZX=180∘
⇒∠YZX=180∘−116∘=64∘ …..(i)
YO is the bisector of ∠XYZ
⇒∠XYO=∠OYZ= 1/2∠XYZ
=1/2(54∘)=27∘ …….(ii)
⇒ZO is the bisector of ∠YZX
∴∠XZO=∠OZY=1/2∠YZX
=1/2(64∘)=32∘ ……(iii)
(from equation (i)
=∠OZY=32°
In △OYZ,
∠OYZ+∠OZY+∠YOZ=180∘
(sum of interior angle of a triangle is 180°)
⇒27°+32°+∠YOZ=180∘
[using equation (i) and (ii)]
⇒59∘+∠YOZ=180∘
⇒∠YOZ=180∘−59∘=121∘
Hence, ∠YOZ=121° & ∠OZY=32°
=========================================================