Math, asked by abiachu, 3 months ago

Question 21.
Find the value(s) of k so that the following function is continuous at x = 0 :

Attachments:

Answers

Answered by Asterinn
19

We have to find the value of k if the given function is continuous at x = 0.

Now,

   \rm   \large\displaystyle\lim_{ \rm x \to0}{\rm \: f(x)} =\rm  f(0)

\rm\longrightarrow\displaystyle\lim_{ \rm x \to0}{\rm \: f(x)} = \displaystyle\lim_{ \rm x \to0}{\rm \: \dfrac{1 - cos \: kx}{x \: sin \: x} } \\  \\  \\ \rm\longrightarrow \displaystyle\lim_{ \rm x \to0}{\rm \: \dfrac{ \dfrac{(1 - cos \: kx) \times  {(kx)}^{2} }{ {(kx)}^{2} } }{ {x}^{2}  \:   \bigg(\dfrac{sin \: x}{x} \bigg) }  } \\  \\  \\  \rm\longrightarrow \displaystyle\lim_{ \rm x \to0}{\rm \: \dfrac{ \dfrac{1  }{ {2} } \times  {(kx)}^{2}  }{ {x}^{2}   }  }\\  \\  \\  \rm\longrightarrow \displaystyle {\dfrac{    \rm {k}^{2}  }{ 2   }  }...(1)

  \rm f(0) =  \dfrac{1}{2} ...(2)

Now, from (1) and (2) :-

 \rm \rightarrow \dfrac{ {k}^{2} }{2}  =  \dfrac{1}{2}  \\  \\  \\\rm \rightarrow { {k}^{2} }  =  1\\  \\  \\  \rm \rightarrow { {k} }  =  \pm 1

Similar questions