Question 21 Prove that [cos 4x + cos 3x + cos 2x] / [sin 4x + sin 3x + sin 2x] = cot 3x
Class X1 - Maths -Trigonometric Functions Page 73
Answers
Answered by
11
LHS = (cos4x + cos3x + cos2x)/(sin4x + sin3x +sin2x)
use the formula,
sinC + sinD = 2sin(C+D)/2.cos(C-D)/2
and, cosC+cosD = 2cos(C + D)/2.cos(C-D)/2
= {(cos4x + cos2x)+cos3x}/{(sin4x+sin2x)+sin3x}
= {2cos(4x+2x)/2.cos(4x-2x)/2 + cos3x}/{2sin(4x+2x)/2.cos(4x-2x)/2+sin3x}
=(2cos3x.cosx + cos3x)/(2sin3x.cosx+sin3x)
= cos3x(2cosx+1)/sin3x(2cosx+1)
= cos3x/sin3x
= cot3x = RHS
use the formula,
sinC + sinD = 2sin(C+D)/2.cos(C-D)/2
and, cosC+cosD = 2cos(C + D)/2.cos(C-D)/2
= {(cos4x + cos2x)+cos3x}/{(sin4x+sin2x)+sin3x}
= {2cos(4x+2x)/2.cos(4x-2x)/2 + cos3x}/{2sin(4x+2x)/2.cos(4x-2x)/2+sin3x}
=(2cos3x.cosx + cos3x)/(2sin3x.cosx+sin3x)
= cos3x(2cosx+1)/sin3x(2cosx+1)
= cos3x/sin3x
= cot3x = RHS
Answered by
0
Similar questions
Science,
7 months ago
Psychology,
7 months ago
Math,
1 year ago
Math,
1 year ago
Math,
1 year ago
Social Sciences,
1 year ago
Math,
1 year ago