Math, asked by topper000162, 2 months ago

QUESTION :-

(2a-5b) (2a + 5b) (4a² +25b²)

__________________

⚠️ Don't Spam ⚠️

Spam = 10 Ans Report

Answers

Answered by 1910h
0

Step-by-step explanation:

2a−5b)(2a+5b)(4a

2

+25b

2

)

\begin{gathered}\underline{\purple{\frak{ \: \: Find:- \: \: }}} \\ \\ \end{gathered}

Find:−

\sf Value\:of\:(2a-5b)(2a+5b)(4a^2 + 25b^2)Valueof(2a−5b)(2a+5b)(4a

2

+25b

2

)

\begin{gathered}\underline{\purple{\frak{ \: \: Solution:- \: \: }}} \\ \\ \end{gathered}

Solution:−

we, have

\begin{gathered} \dashrightarrow\sf (2a-5b)(2a+5b)(4a^2 + 25b^2) \\ \\ \end{gathered}

⇢(2a−5b)(2a+5b)(4a

2

+25b

2

)

\begin{gathered} \dashrightarrow\sf (2a+5b)(2a - 5b)(4a^2 + 25b^2) \\ \\ \end{gathered}

⇢(2a+5b)(2a−5b)(4a

2

+25b

2

)

\begin{gathered} \dashrightarrow\sf \{(2a)^2 - (5b)^2 \}(4a^2 + 25b^2) \quad \bigg\lgroup\because (a+b)(a-b) = a^2 - b^2\bigg\rgroup \\ \\ \end{gathered}

⇢{(2a)

2

−(5b)

2

}(4a

2

+25b

2

)

∵(a+b)(a−b)=a

2

−b

2

\begin{gathered} \dashrightarrow\sf (4a^2 - 25b^2)(4a^2 + 25b^2)\\ \\ \end{gathered}

⇢(4a

2

−25b

2

)(4a

2

+25b

2

)

\begin{gathered} \dashrightarrow\sf (4a^2 + 25b^2) (4a^2 - 25b^2) \\ \\ \end{gathered}

⇢(4a

2

+25b

2

)(4a

2

−25b

2

)

\begin{gathered} \dashrightarrow\sf (4a^2)^2 - (25b^2)^2\quad \bigg\lgroup\because (a+b)(a-b) = a^2 - b^2\bigg\rgroup \\ \\ \end{gathered}

⇢(4a

2

)

2

−(25b

2

)

2

∵(a+b)(a−b)=a

2

−b

2

\begin{gathered} \dashrightarrow\sf 16a^4 - 625b^4 \\ \\ \end{gathered}

⇢16a

4

−625b

4

\underline{\boxed{\sf\therefore (2a-5b)(2a+5b)(4a^2+25b^2) = 16a^4 - 625b^4}}

∴(2a−5b)(2a+5b)(4a

2

+25b

2

)=16a

4

−625b

4

Answered by KnowtoGrow
0

Answer:

(2a-5b) (2a + 5b) (4a² +25b²) =  16a⁴ - 625b⁴

Explanation:

P.F.A the full solution below along with the necessary identities.

Hope you got that.

Thank You.

Attachments:
Similar questions