Math, asked by vinku0658, 11 months ago

Question 3 (2 marks)
Q3. If ab+bc+ca=71 and a+b+c=15, then the value of a2+b2+c2 is equal to:​

Answers

Answered by Abhishek474241
3

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • ab + bc + ac = 71
  • a + b + c = 15

{\sf{\green{\underline{\large{To\:find}}}}}

  • Then
  • a²+b²+c²

{\sf{\pink{\underline{\Large{Explanation}}}}}

Identity

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

utting the values

=>(a+b+c)²=a²+b²+c²+2(ab + bc + ac)

=>(15)²=a²+b²+c²+2(71)

=>225 =a²+b²+c²+142

=>225-142=a²+b²+c²

=>a²+b²+c²= 83

Additional Information

\boxed{\boxed{\sf\red{(a+b)^2=a^2+b^2+2ab}}}

\implies\tt{X^3+\dfrac{1}{X^3)}=(X+\dfrac{1}{x})(X^2+\dfrac{1}{X^2}-\frac{1}{X}\times{X)}}

Answered by aasthaarora2005
0

Answer:

Step-by-step explanation:

Plz mark me as brainliest!!!!

Hope it helps u!!!

Attachments:
Similar questions