Math, asked by satyen, 1 year ago

question 3 find the value of root under 3.1428 and root under 0.31428 correct to three decimal places.

Attachments:

Answers

Answered by amitnrw
20

Answer:

Step-by-step explanation:

√3.1428

1.7727

3.1428

1 1

2.1428

2.7 1.89

0.2528

3.47 0.2429

0.0099

3.542 0.007084

0.002816

3.5447 0.00248129

0.00033471

√3.1428 = 1.7727 = 1.773

√0.31428 = √314280/1000000 = (√314280)/1000

√314280 = 560.6

560.6

314280

5 2803

64280

106 636

680

1120 0

680.0

1120.6 672.36

7.64

√0.31428  = 560.6/1000 = 0.5606 = 0.561

Answered by MaheswariS
8

Answer:

\sqrt{3.1428}1.7851

Step-by-step explanation:

I have applied errors and approximation method to find square root of the given number.

\sqrt{3.1428}

Let y=f(x)=\sqrt{x}=x^{\frac{1}{2}}

Take, x=4 and Δx=dx=-0.8572

dy=\frac{1}{2\sqrt{x}}\:dx

dy=\frac{1}{2\sqrt{4}}\:(-0.8572)

dy=\frac{1}{2(2)}\:(-0.8572)

dy=\frac{1}{4}\:(-0.8572)

dy=-0.2143

Now

\sqrt{3.1428}

=f(3.1428)

=f(4-0.8572)

=f(4+(-0.8572))

=f(4+\Delta{x})

f(4)+dy

\sqrt{4}+(-0.2143)

2+(-0.2143)

1.7851

\sqrt{3.1428}1.7851

Similar questions