Question 3 plss...i need it fast
Answers
Answer:
they both have the same answer that is 1
hope it helps
Answer- The above question is from the chapter 'Introduction to Trigonometry'.
Trigonometry- The branch of Mathematics which helps in dealing with measure of three sides of a right-angled triangle is called Trigonometry.
Trigonometric Ratios:
sin θ = Perpendicular/Hypotenuse
cos θ = Base/Hypotenuse
tan θ = Perpendicular/Base
cosec θ = Hypotenuse/Perpendicular
sec θ = Hypotenuse/Base
cot θ = Base/Perpendicular
Also, tan θ = sin θ/cos θ and cot θ = cos θ/sinθ.
Trigonometric Identities:
1. sin²θ + cos²θ = 1
2. sec²θ - tan²θ = 1
3. cosec²θ - cot²θ = 1
Complementary Angles in Trigonometry:
1. sin θ = (90° - cos θ)
2. cos θ = (90° - sin θ)
3. cosec θ = (90° - sec θ)
4. sec θ = (90° - cosec θ)
5. tan θ = (90° - cot θ)
6. cot θ = (90° - tan θ)
Given question: Evaluate-
(i)
(ii) sin 25° cos 65° + cos 25° sin 65°
Solution: i) We know that 63° + 27° = 90°
63° = 90° - 27°
Also, 17° + 73° = 90°
17° = 90° - 73°
=
=
= [∵ sin²θ + cos²θ = 1]
= 1
∴ = 1
(ii) We know that 65° + 25° = 90°
65° = 90°- 25°
25° = 90° - 65°
sin 25° cos 65° + cos 25° sin 65°
= sin (90° - 65°) cos 65° + cos (90° - 65°) sin 65°
= cos 65° × cos 65° + sin 65° × sin 65°
= cos² 65° + sin² 65° [∵ sin²θ + cos²θ = 1]
= 1
∴ sin 25° cos 65° + cos 25° sin 65° = 1