Math, asked by patnimanisha303, 3 months ago

Question 3. The angles of a quadrilateral are in the ratio of 2 : 3:5:8. Find the
measure of each angle.
Sol:​

Answers

Answered by visu2005
2

Answer:

let the ratios be 2x,3x,5x,8x

now,

the sum of quadrilateral is 360

so,

2x+3x+5x+8x=360

18x=360

x= 360÷18=20

now,

2x= 2×20= 40

3x=3×20=60

5x=5×20=100

8x=8×20= 160

Answered by TheWonderWall
3

\large\sf\underline{Given:-}

  • \sf\:Ratio\:of\:angles\:=2:3:5:8

\large\sf\underline{To\:find:-}

  • \sf\:Each\:angles\:of\:the\:quadrilateral

\large\sf\underline{Assumption:-}

Let the four angles of the quadrilateral be :

  • \sf\:2x

  • \sf\:3x

  • \sf\:5x

  • \sf\:8x

\large\sf\underline{Solution:-}

We know,

\large{\underline{\boxed{\mathrm\orange{Sum\:of\:all\:angles\:=360°}}}}

\sf\:So\:2x+3x+5x+8x=360°

\sf↦\:18x=360°

\sf↦\:x=\frac{360°}{18}

\sf↦\:x=20°

Now substituting the value of x in all the angles :

\sf\:1^{st}\:angle=2x

\sf↦\:1^{st}\:angle=2 \times 20°

\small{\underline{\boxed{\mathrm\pink{↦1^{st}\:angle=40°}}}}

\sf\:2^{nd}\:angle=3x

\sf↦\:2^{nd}\:angle=3 \times 20°

\small{\underline{\boxed{\mathrm\pink{↦2^{nd}\:angle=60°}}}}

\sf\:3^{rd}\:angle=5x

\sf↦\:3^{rd}\:angle=5 \times 20°

\small{\underline{\boxed{\mathrm\pink{↦3^{rd}\:angle=100°}}}}

\sf\:4^{th}\:angle=8x

\sf↦\:4^{th}\:angle=8 \times 20°

\small{\underline{\boxed{\mathrm\pink{↦4^{th}\:angle=160°}}}}

  • Thnku :)
Similar questions