Question 4 State whether the following are true or false. Justify your answer. (i) sin (A + B) = sin A + sin B (ii) The value of sinθ increases as θ increases (iii) The value of cos θ increases as θ increases (iv) sinθ = cos θ for all values of θ (v) cot A is not defined for A = 0°
Class 10 - Math - Introduction to Trigonometry Page 187
Answers
Answered by
4
hope u get the answer only for 1 quad
Attachments:
Answered by
10
i) FALSE
Let A= 60° & B= 30°
Then , sin(A+B) =sin (60°+30°)= sin 90°= 1.
sin(A+B)=1
sinA+ sinB = sin60° sin30°
= √3/2 + 1/2 = (√3+1)/2
sinA+ sinB =(√3+1)/2
so , sin(A+B) ≠ sin A + sin B
ii) TRUE
Observe the table given below
sin 0°= 0
sin 30°= 1/2
sin 45°= 1/√2
sin 60°= √3/2
sin 90°= 1
From this table it is clear that value of sin θ increases at θ increases.
iii) FALSE
Observe the table given below
cos 0°= 1
cos 30°= √3/2
cos45°= 1/√2
cos 60°= √1/2
cos 90°= 0
From this table it is clear that value of cos θ decreases at θ increases.
iv)
FALSE
Because it is only true for θ= 45°
sin45° = 1/√2= cos45°
v)
TRUE
Because if A= 0°, then cotA= 1/tanA
cotA= 1/tan0°= 1/0 = ∞ (not defined)
________________________________________________________
Hope this will help you....
Let A= 60° & B= 30°
Then , sin(A+B) =sin (60°+30°)= sin 90°= 1.
sin(A+B)=1
sinA+ sinB = sin60° sin30°
= √3/2 + 1/2 = (√3+1)/2
sinA+ sinB =(√3+1)/2
so , sin(A+B) ≠ sin A + sin B
ii) TRUE
Observe the table given below
sin 0°= 0
sin 30°= 1/2
sin 45°= 1/√2
sin 60°= √3/2
sin 90°= 1
From this table it is clear that value of sin θ increases at θ increases.
iii) FALSE
Observe the table given below
cos 0°= 1
cos 30°= √3/2
cos45°= 1/√2
cos 60°= √1/2
cos 90°= 0
From this table it is clear that value of cos θ decreases at θ increases.
iv)
FALSE
Because it is only true for θ= 45°
sin45° = 1/√2= cos45°
v)
TRUE
Because if A= 0°, then cotA= 1/tanA
cotA= 1/tan0°= 1/0 = ∞ (not defined)
________________________________________________________
Hope this will help you....
Similar questions