Math, asked by BrainlyHelper, 1 year ago

Question 4 Which of the following pairs of linear equations are consistent/ inconsistent? If consistent, obtain the solution graphically:
(i) x+y=5; 2x+2y=10
(ii) x-y=8; 3x-3y=16
(iii) 2x+y-6=0; 4x-2y-4=0
(iv) 2x-2y-2=0; 4x-4y-5=0

Class 10 - Math - Pair of Linear Equations in Two Variables Page 49

Answers

Answered by RajeshKumarNonia
66
1) Consistent
2) Inconsistent
3) Consistent
4) Inconsistent
Answered by nikitasingh79
136
Graphical Method of solving pair of linear equations in two variables

The general form for a pair of linear equations in two variables x and y is
a1x + b1y + c1 = 0 ,
a
2x + b2y + c2 = 0 ,

Where a
1, a2, b1, b2, c1, c2 are all real numbers ,a1²+ b1² ≠ 0 & a + b ≠ 0.


Condition 1: Intersecting Lines
If   a 1 / a 2 ≠  b 1 / b 2  , then the pair of linear equations has a unique solution.

Condition 2: Coincident Lines
If   a 1 / a 2 =  b 1 / b 2 =  c 1 / c 2  ,then the pair of linear equations has infinite solutions.

A pair of linear equations, which has a unique or infinite solutions are said to be a consistent pair of linear equations.

A pair of linear equations, which has  infinite many distinct common solutions are said to be a consistent pair or dependent pair of linear equations.


Condition 3: Parallel Lines
If   a 1/ a 2 =  b 1/  b 2 ≠  c 1 / c 2 , then a pair of linear equations   has no solution.

A pair of linear equations which has no solution is said to be an inconsistent pair of linear equations.

----------------------------------------------------------------------------------------------------

Solution: 


(i) x + y = 5;          x + y -5=0

2 x + 2 y = 10      2 x + 2 y - 10 =0

on comparing with ax+by+c+0

a1= 1 ,  b1=1,  c1= -5

a2=2,    b2=2,     c2= - 10


a1/a2 = 1/2
b1/b2 = 1/2 &
c1/c2 = 5/10 = 1/2

Hence, a1/a2 = b1/b2 = c1/c2

Therefore, these linear equations are coincident pair of lines and thus have infinite number of possible solutions. Hence, the pair of linear equations is consistent.


Now we need to solve it graphically 

[ graph is in the attachment]

---------------------------------------------------------------------------------------------------


(ii) x – y = 8,             x -y -8=0

3x – 3y = 16,          3 x-3 y-16=0

on comparing with ax+by+c+0

a1= 1 ,  b1= -1,  c1= -8

a2=3,    b2=-3,     c2= - 16

a1/a2 = 1/3
b1/b2 = -1/-3 = 1/3
c1/c2 = 8/16 = 1/2

Hence, a1/a2 = b1/b2 ≠ c1/c2

Therefore, these linear equations are parallel to each other and thus have no possible solution. Hence, the pair of linear equations is inconsistent.

----------------------------------------------------------------------------------------------------


(iii) 2x + y – 6 = 0,         

4x – 2y – 4 = 0

on comparing with ax+by+c+0

a1= 2 ,  b1= 1,  c1= -6

a2=4,    b2=-2,     c2= -4

a1/a2 = 2/4 = 1/2
b1/b2 = -1/2 and
c1/c2 = -6/-4 = 3/2

Hence, a1/a2 ≠ b1/b2

Therefore, these linear equations are intersecting each other at one point and thus have only one possible solution. Hence, the pair of linear equations is consistent.


Now we need to solve it graphically.

graph is in the attachment]

-----------------------------------------------------------------------------------------------------


(iv) 2x – 2y – 2 = 0, 

4x – 4y – 5 = 0

on comparing with ax+by+c+0

a1= 2 ,  b1= -2,  c1= -2

a2=4,    b2=-4,     c2= -5

a1/a2 = 2/4 = 1/2
b1/b2 = -2/-4 = 1/2 
c1/c2 = 2/5

Hence, a1/a2 = b1/b2 ≠ c1/c2

Therefore, these linear equations are parallel to each other and thus, have no possible solution.

Hence, the pair of linear equations is inconsistent.


---------------------------------------------------------------------------------------------------

Hope this will help you....

Attachments:

Anonymous: thanku mam
ag723064oveg7o: thanks for give my solution u both mam and sir
Similar questions