Math, asked by BrainlyElon, 2 days ago

Question :

5ˣ = 7ʸ = 1225 then find \displaystyle \sf \left( \dfrac{xy}{x+y} \right) .

Answers

Answered by BrainlyIAS
18

Consider ,

\sf 5^x = 1225

\sf \longrightarrow 5 = 1225^{\frac{1}{x}}

Similarly ,

\longrightarrow \sf 7 = 1225^{\frac{1}{y}}

Now multiply these two equations ,

\longrightarrow \sf 5 . 7 = 1225^{\frac{1}{x}}.1225^{\frac{1}{y}}

\longrightarrow \sf 5 . 7 = 1225^{\frac{1}{x}+\frac{1}{y}}

\longrightarrow \sf 35 = (35^2)^{\frac{1}{x}+\frac{1}{y}}

\longrightarrow \sf 35^1 = 35^{2\left(\frac{1}{x}+\frac{1}{y}\right)}

Bases are equal , so exponents should be equal .

\longrightarrow \sf 1 = 2\left(\dfrac{1}{x}+\dfrac{1}{y} \right)

\longrightarrow \sf  2\left(\dfrac{1}{x}+\dfrac{1}{y} \right)=1

\longrightarrow \sf  \left(\dfrac{1}{x}+\dfrac{1}{y} \right)=\dfrac{1}{2}

\longrightarrow \sf  \left(\dfrac{x+y}{xy} \right)=\dfrac{1}{2}

\longrightarrow \sf  \blue{\left(\dfrac{xy}{x+y} \right)=2}

Similar questions