Math, asked by anushka1962004, 7 months ago

Question 5. Prove that the perpendicular at the point of contact to the
tangent to a circle passes through the centre.​

Answers

Answered by Anonymous
3

Answer:

Step-by-step explanation:

Given a circle with center O and AB the tangent intersecting circle at point P

and prove that OP⊥AB

We know that tangent of the circle is perpendicular to radius at points of contact Hence

OP⊥AB

So, ∠OPB=90

o

..........(i)

Now lets assume some point X

Such that XP⊥AN

Hence ∠XPB=90

o

.........(ii)

From eq (i) & (ii)

∠OPB=∠XPB=90

o

Which is possible only if line XP passes though O

Hence perpendicular to tangent passes though centre

Request:

Please follow me....♥️♥️♥️

And please mark this answer as Brainiest...

Attachments:
Similar questions