Math, asked by spss19m20, 2 months ago

Question 71
Let O be the origin and P(-2, 4) be a point in the xy plane. Express OP in terms of vectors
and j also find OP
415
55
315
225
Clear Answer​

Answers

Answered by Swarup1998
1

Step-by-step explanation:

The coordinates of the origin are \mathsf{O(0,0)} which in terms of vectors be \mathsf{(0\hat{i}+0\hat{j})}.

The coordinates of the given point are \mathsf{P(-2,4)} which in terms of vectors be \mathsf{(-2\hat{i}+4\hat{j})}.

Thus the vector \mathsf{\vec{OP}}

\mathsf{= position\:vector\:of\:P - position\:vector\:of\:O}

\mathsf{=(-2\hat{i}+4\hat{j})-(0\hat{i}+0\hat{j})}

\mathsf{=-2\hat{i}+4\hat{j}}

Also, \mathsf{OP=|\vec{OP}|=\sqrt{(-2)^{2}+4^{2}}} units

\Rightarrow \mathsf{OP=\sqrt{4+16}} units

\Rightarrow \mathsf{OP=\sqrt{20}} units

\Rightarrow \mathsf{OP=2\sqrt{5}} units

Answer:

\mathsf{\vec{OP}=-2\hat{i}+4\hat{j}}

\mathsf{OP=2\sqrt{5}} units

Similar questions