"Question 8 Factorise each of the following:
(i) 8a^3 + b^3 + 12a^2b + 6ab^2
(ii) 8a^3 - b^3 - 12a^2b + 6ab^2
(iii) 27 - 125a^3 - 135a + 225a^2
(iv) 64a^3 - 27b^3 - 144a^2b + 108ab^2
(v) 27p^3 - 1/216 - 9p^2/2 + p/4
Class 9 - Math - Polynomials Page 49"
Answers
Identity:
An identity is an equality which is true for all values of a variable in the equality.
(a + b)³ = a³+ b³+ 3ab(a + b)
In an identity the right hand side expression is called expanded form of the left hand side expression.
-----------------------------------------------------------------------------------------------------
Solution:
(i) 8a³ + b³+ 12a²b + 6ab²
Using identity,
(a + b)³ = a³ + b³ + 3a²b + 3ab²
8a³ + b³+ 12a²b + 6ab²
We can rewrite a given expression as
= (2a)³ + b³ + 3(2a)²b + 3(2a)(b)²
= (2a + b)³
= (2a + b)(2a + b)(2a + b)
(ii) 8a³ – b³ – 12a²b + 6ab²
Using identity,
(a – b)³ = a³– b³ – 3a²b + 3ab²
8a³ – b³– 12a²b + 6ab²
We can rewrite the given expression as
= (2a)³ – b³ – 3(2a)²b + 3(2a)(b)²
= (2a – b)³
= (2a – b)(2a – b)(2a – b)
(iii) 27 – 125a³ – 135a + 225a²
Using identity,
(a – b)³ = a³ – b³ – 3a²b + 3ab²
27 – 125a³ – 135a + 225a²
= 3³– (5a)³ – 3(3)²(5a) + 3(3)(5a)²
= (3 – 5a)³
= (3 – 5a)(3 – 5a)(3 – 5a)
(iv) 64a³ – 27b³ – 144a²b + 108ab²
Using identity,
(a – b)³ = a³ – b³ – 3a²b + 3ab²
64a³ – 27b³ – 144a²b + 108ab²
We can rewrite the given expression as
= (4a)³ – (3b)³ – 3(4a)²(3b) + 3(4a)(3b)²
= (4a – 3b)³
=(4a–3b)(4a–3b)(4a –3b)
(v) 27p³ – 1/216 – 9/2 p²+ 1/4 p
Using identity,
(a – b)³ = a³ – b³ – 3a²b + 3ab²
27p³ – 1/216 – 9/2 p² + 1/4 p
We can rewrite the given expression as
= (3p)³-(1/6)³-3(3p)²(1/6) + 3(3p)(1/6)²
= (3p – 1/6)³
= (3p – 1/6) (3p – 1/6) (3p – 1/6)
==========================================================
Hope this will help you....
hope it helps........