Question 8: Prove tan¯¹ 1/5 + tan¯¹ 1/7 + tan¯¹ 1/3 + tan¯¹ 1/8 = π/4
Class 12 - Math - Inverse Trigonometric Functions
Answers
Answered by
4
⇒ tan¯¹ 1/5 + tan¯¹ 1/7 + tan¯¹ 1/3 + tan¯¹ 1/8 = π/4
⇒ tan¯¹ [ (1/5 + 1/7) / (1- 1/5×1/7) ] + tan¯¹ [ (1/3 + 1/8) / (1 - 1/3×1/8) ]
⇒ tan¯¹ [ (7+5) / (35 -1) ] + tan¯¹ [ (8+3) / (24 -1) ]
⇒ tan¯¹ (12/34) + tan¯¹ (11 /23)
⇒ tan¯¹ (6/17) + tan¯¹ (11 /23)
⇒ tan¯¹ [ (6/17 + 11/23) / (1- 6/17×11/23) ]
⇒ tan¯¹ [ (138 + 187) / (391 - 66) ]
⇒ tan¯¹ (325 / 325)
⇒ tan¯¹ (1)
⇒ π/4
Hope it helps!!!
⇒ tan¯¹ [ (1/5 + 1/7) / (1- 1/5×1/7) ] + tan¯¹ [ (1/3 + 1/8) / (1 - 1/3×1/8) ]
⇒ tan¯¹ [ (7+5) / (35 -1) ] + tan¯¹ [ (8+3) / (24 -1) ]
⇒ tan¯¹ (12/34) + tan¯¹ (11 /23)
⇒ tan¯¹ (6/17) + tan¯¹ (11 /23)
⇒ tan¯¹ [ (6/17 + 11/23) / (1- 6/17×11/23) ]
⇒ tan¯¹ [ (138 + 187) / (391 - 66) ]
⇒ tan¯¹ (325 / 325)
⇒ tan¯¹ (1)
⇒ π/4
Hope it helps!!!
Answered by
1
Similar questions