Math, asked by BrainlyHelper, 1 year ago

Question 8: Prove tan¯¹ 1/5 + tan¯¹ 1/7 + tan¯¹ 1/3 + tan¯¹ 1/8 = π/4

Class 12 - Math - Inverse Trigonometric Functions

Answers

Answered by Ruhanika105
4
⇒ tan¯¹ 1/5 + tan¯¹ 1/7 + tan¯¹ 1/3 + tan¯¹ 1/8 = π/4
⇒ tan¯¹ [ (1/5 + 1/7) / (1- 1/5×1/7) ] +  tan¯¹ [ (1/3 + 1/8) / (1 - 1/3×1/8) ]
⇒ tan¯¹ [ (7+5) / (35 -1) ] + tan¯¹ [ (8+3) / (24 -1) ]
⇒ tan¯¹ (12/34) + tan¯¹ (11 /23)
⇒ tan¯¹ (6/17) + tan¯¹ (11 /23)
⇒ tan¯¹ [ (6/17 + 11/23) / (1- 6/17×11/23) ]
⇒ tan¯¹  [ (138 + 187) / (391 - 66) ]
⇒ tan¯¹ (325 / 325)
⇒ tan¯¹ (1)
⇒ π/4

Hope it helps!!!
Answered by sandy1816
1

{tan}^{ - 1}  \frac{1}{5}  +  {tan}^{ - 1}  \frac{1}{7}  +  {tan}^{ - 1}  \frac{1}{3}  +  {tan}^{ - 1}  \frac{1}{8}  \\  \\  =  {tan}^{ - 1} ( \frac{ \frac{1}{5} +  \frac{1}{7}  }{1 -  \frac{1}{5} . \frac{1}{7} } ) +  {tan}^{ - 1} ( \frac{ \frac{1}{3} +  \frac{1}{ 8 }  }{1 -  \frac{1}{3}. \frac{1}{8}  } ) \\  \\  =  {tan}^{ - 1} ( \frac{7 + 5}{35 - 1} ) +  {tan}^{ - 1} ( \frac{8 + 3}{24 - 1} ) \\  \\  =  {tan}^{ - 1} ( \frac{12}{34} ) +  {tan}^{ - 1} ( \frac{11}{23} ) \\  \\  =  {tan}^{ - 1}  \frac{6}{17}   +  {tan}^{ - 1} \frac{11}{23}  \\ \\   =  {tan}^{ - 1} ( \frac{ \frac{6}{17} +  \frac{11}{23}  }{1 -  \frac{6}{17} . \frac{11}{23} } ) \\  \\  =  {tan}^{ - 1} ( \frac{138 + 187}{391 - 66} ) \\  \\  =  {tan}^{ - 1} ( \frac{325}{325} ) \\  \\  =  {tan}^{ - 1} 1 \\  \\  =  \frac{\pi}{4}

Similar questions