Math, asked by BrainlyHelper, 1 year ago

Question 8 Prove that [ cos (π+x) . cos (-x) ] / [ sin (π - x) . cos (π/2 +x) ] = (cot (x))^2

Class X1 - Maths -Trigonometric Functions Page 73

Answers

Answered by abhi178
268

LHS = {cos(π+x).cos(-x)}/{sin(π-x).cos(π/2-x)}
we know,
cos(π+x) = -cosx
sin(π-x) = sinx
cos(-x) = cosx
cos(π/2 + x) = -sinx, use this above .

LHS = {(-cosx).cosx}/{sinx.(-sinx}
= cos²x/sin²x
= cot²x = RHS
Answered by pinquancaro
88

Answer and explanation:

To prove : \frac{\cos(\pi +x)\csdot \cos(-x)}{\sin(\pi-x)\cdot \cos(\frac{\pi}{2}+x)}=(\cot(x))^2

Proof :

LHS=\frac{\cos(\pi +x)\csdot \cos(-x)}{\sin(\pi-x)\cdot \cos(\frac{\pi}{2}+x)}

Applying trigonometric properties,

\cos(\pi +x)=-\cos x

\sin(\pi-x)=\sin x

\cos(-x)=\cos x

\cos(\frac{\pi}{2}+x)=-\sin x

Substitute all the values in the expression,

LHS=\frac{-\cos x\csdot \cos x}{\sin x\cdot -\sin x}

LHS=\frac{-\cos^2 x}{-\sin^2 x}

LHS=(\frac{\cos x}{\sin x})^2

LHS=(\cot(x))^2

LHS=RHS

Hence proved.

Similar questions