Math, asked by jasuu31, 13 days ago

Question 9:-
Q9. If sin 0 + cos 0 =y, and cos 0 - sin 0 = x, then
x2 + y 2 is equal to
(a) o
(b) 1/2
(c) 1
(d) 2

Answers

Answered by jaidansari248
2

 y =  \sin( \theta)  +  \cos(\theta)  \\ squaring \: both \: side \\  {y}^{2}  = ( \sin(\theta)  +  \cos(\theta) ) {}^{2}  \\  =  \sin {}^{2} ( \theta)  + 2 \sin(\theta)  \cos(\theta)  +  \cos {}^{2} (\theta)  \\  =   \{\sin {}^{2} ( \theta) + \cos {}^{2} (\theta) \} +2 \sin(\theta)  \cos(\theta) \\  = 1 +  2 \sin(\theta)  \cos(\theta) \\  =  >  {y}^{2}  = 1 + 2 \sin(\theta)  \cos(\theta)

x =  \cos( \theta)  -  \sin( \theta)  \\ squaring \: both \: side \\  {x}^{2}  = (\cos( \theta)  -  \sin( \theta) ) {}^{2}  \\  =  \cos {}^{2} ( \theta)  + sin {}^{2} ( \theta) -2 \sin( \theta)  \cos( \theta)  \\  = 1 -2 \sin( \theta)  \cos( \theta)  \\ =  >   {x}^{2}  = 1 -2 \sin( \theta)  \cos( \theta)

then \\  {x}^{2}  +  {y}^{2}  \\  = 1  + 2 \sin( \theta)  \cos( \theta) + 1 -2 \sin( \theta)  \cos( \theta) \\ = 2

(d) \: is \: the \: correct \: answer

Similar questions