Question :
a and ß are the roots of the quadratic polynomial p(x)=x^2-(k-6)x+2(2k-1).Find the value of k,if a+ß=1/2aß.
♻️Moderator™♻️
Content Quality Answer Needed ✔️
Answers
Correct Question:
α and β are the zeroes of the quadratic polynomial p(x) = x² - ( k - 6 )x + 2( 2k - 1 ). Find the value of k, if α + β = ( 1/2 ) × αβ
Answer:
- 5
Step-by-step explanation:
Given :
α and β are the zeroes of the quadratic polynomial p(x) = x² - ( k - 6 )x + 2( 2k - 1 ).
Comparing x² - ( k - 6 )x + 2( 2k - 1 ) with ax² + bx + c we get,
- a = 1
- b = - ( k - 6 )
- c = 2( 2k - 1 )
Sum of zeroes = α + β = - b/a = - { - ( k - 6 ) } / 1 = k - 6
Product of zeroes = αβ = c/a = { 2( 2k - 1 ) } / 1 = 2( 2k - 1 )
Given :
⇒ α + β = ( 1/2 ) × αβ
⇒ k - 6 = ( 1/2 ) × { 2( 2k - 1 ) }
⇒ k - 6 = 2k - 1
⇒ - 6 + 1 = 2k - k
⇒ - 5 = k
⇒ k = - 5
Therefore the value of k is - 5.
Answer:
-5
Step-by-step explanation:
Given
p(x)=x^2-(k-6)x+2(2k-1)
a+ß=1/2aß equation 1
we know that
a+ß = -b/a
and
aß = c/a
in equation
a = 1
b = -(k - 6)
c = 2(2k -1)
a+ß= k - 6
aß = 2(2k -1)
on putting the value in equation 1 we get
a+ß=1/2aß
k - 6 = 2(2k -1)/2
k - 6 = 2k -1
k = -5