Physics, asked by AestheticSky, 4 days ago


Question : A cannon fires successively two shells with velocity \sf V_{o} = 250 m/s ; The first at the angle \sf \theta_{1} = 53° and the second at an angle of \sf \theta_{2} = 37° to the horizontal, in the same vertical plane, neglecting the air drag, find the time interval (in seconds) between firings leading to the collision of the shells (take g = 10m/s²)

Answer : 10 sec ​

Answers

Answered by devanandbhosale333
1

Explanation:

mark me as brainleast and give some thanks

Attachments:
Answered by SparklingBoy
37

 \large \dag Question :-

A cannon fires successively two shells with velocity \sf V_{o} = 250 m/s ; The first at the angle \sf \theta_{1} = 53° and the second at an angle of \sf \theta_{2} = 37° to the horizontal, in the same vertical plane, neglecting the air drag, find the time interval (in seconds) between firings leading to the collision of the shells (take g = 10m/s²)

 \large \dag Answer :-

Time interval between firings is 10 seconds

 \large \dag Step by step Solution :-

Firslty Let's calculate the velocities of both particles in both x and y directions.

☆ For Particle 1 》

Let,

  • velocity in x - direction be =  \sf u_{x{_{_1}}}

  • velocity in y - direction be =  \sf u_{y{_{_1}}}

Now,

 \sf u_{x{_{_1}}} = \sf V_{o}.cos53 \degree \\  \\

:\longmapsto \rm  u_{x{_{_1}}} = 250 \times  \frac{3}{5}  \\  \\

 :\longmapsto \rm   \underline{ \underline{u_{x{_{_1}}} = 150 \: m/s}} \\  \\

Also,

 \sf u_{y{_{_1}}} = \sf V_{o}.sin53 \degree \\  \\

:\longmapsto \rm  u_{x{_{_1}}} = 250 \times  \frac{4}{5}  \\  \\

 :\longmapsto \rm   \underline{ \underline{u_{x{_{_1}}} = 200 \: m/s}} \\  \\

☆ For Particle 2 》

Let,

  • velocity in x - direction be =  \sf u_{x{_{_2}}}

  • velocity in y - direction be =  \sf u_{y{_{_2}}}

Now,

 \sf u_{x{_{_2}}} = \sf V_{o}.cos37\degree \\  \\

:\longmapsto \rm  u_{x{_{_2}}} = 250 \times  \frac{4}{5}  \\  \\

 :\longmapsto \rm   \underline{ \underline{u_{x{_{_2}}} = 200 \: m/s}} \\  \\

Also,

 \sf u_{y{_{_2}}} = \sf V_{o}.sin37 \degree \\  \\

:\longmapsto \rm  u_{y{_{_2}}} = 250 \times  \frac{3}{5}  \\  \\

 :\longmapsto \rm   \underline{ \underline{u_{y{_{_2}}} = 150 \: m/s}} \\  \\

Now Let's calculate time taken by both particles to reach point P.

Let,

  • Time taken by 1st particle be =  \sf t _{1}

  • Time taken by 2nd particle be =  \sf t _{2}

Taking x - direction of Both Particles :-

In X direction acceleration of both particles will be zero.

☆ For Particle 1 》

Applying 2nd Eq. of kinematics ;

 :\longmapsto \sf S_{x{_{_1}}} =u _{x{_{_1}}}t _{1} +  \frac{1}{2}  \times a_{x{_{_1}}} {t _{1}}^{2}  \\  \\

:\longmapsto \sf S_{x{_{_1}}} =  u_{x{_{_1}}}t _{1}+0 \\  \\

:\longmapsto \sf x = 150 \times t _{1} \\  \\

:\longmapsto \sf\underline{ \underline{ t _{1} =  \frac{x}{150}}}\:\: ----(1)  \\  \\

☆ For Particle 2 》

Applying 2nd Eq. of kinematics ;

 :\longmapsto \sf S_{x{_{_2}}} =u _{x{_{_2}}}t _{2} +  \frac{1}{2}  \times a_{x{_{_2}}} {t _{2}}^{2}  \\  \\

:\longmapsto \sf S_{x{_{_2}}} =  u_{x{_{_2}}}t _{2}+0 \\  \\

:\longmapsto \sf x = 200 \times t _{2} \\  \\

:\longmapsto \sf\underline{ \underline{ t _{2} =  \frac{x}{200}}}  \:\: ----(2)\\  \\

Taking y - direction of Both Particles :-

in Y direction acceleration of both particles is - g.

☆ For Particle 1 》

Applying 2nd Eq. of kinematics ;

 :\longmapsto \sf S_{y{_{_1}}} = u_{y{_{_1}}}t _{1} -  \frac{1}{2} g {t _{1}}^{2}  \\  \\

⏩ Putting values ;

:\longmapsto \sf y = 200 \times   \frac{x}{150}  -  \frac{1}{2}  \times 10 \times  \bigg( \frac{x}{150}  \bigg) ^{2}  \\  \\

:\longmapsto \sf y =  \frac{4}{3} x -  \frac{1}{2}  \times 10 \times  \frac{ {x}^{2} }{22500}  \\  \\

:\longmapsto \sf y =  \frac{4}{3} x -  \frac{ {x}^{2} }{4500} \:  \:  -  -  -  - (3)  \\  \\

☆ For Particle 2 》

Applying 2nd Eq. of kinematics ;

 :\longmapsto \sf S_{y{_{_2}}} = u_{y{_{_2}}}t _{2} -  \frac{1}{2} g {t _{2}}^{2}  \\  \\

⏩ Putting values ;

:\longmapsto \sf y = 150 \times   \frac{x}{200}  -  \frac{1}{2}  \times 10 \times  \bigg( \frac{x}{200}  \bigg) ^{2}  \\  \\

:\longmapsto \sf y =  \frac{3}{4} x -  \frac{1}{2}  \times 10 \times  \frac{ {x}^{2} }{40000}  \\  \\

:\longmapsto \sf y =  \frac{3}{4} x -  \frac{ {x}^{2} }{8000} \:  \:  -  -  -  - (4)  \\  \\

⏩ Equating value of y from (3) and (4) ;

:\longmapsto\sf  \frac{4}{3} x -  \frac{ {x}^{2} }{4500} =  \frac{3}{4}x -  \frac{ {x}^{2} }{8000}    \\  \\

:\longmapsto \sf   \frac{x}{4500}  -  \frac{x}{8000} =  \frac{4}{3} -  \frac{3}{4}    \\  \\

⏩ On Simplifying further ;

\purple{ \large :\longmapsto  \underline {\boxed{{\bf x = 6000} }}} \\  \\

⏩ Putting Value of x in (1) and (2) we get ;

:\longmapsto \sf t _{1} =  \frac{6000}{150}  \\  \\

\orange{ \large :\longmapsto  \underline {\boxed{{\bf t _{1} = 40} }}} \\  \\

Also,

:\longmapsto \sf t _{2} =  \frac{6000}{200}  \\  \\

\orange{ \large :\longmapsto  \underline {\boxed{{\bf t _{2} = 30} }}} \\  \\

Therefore,

Time interval between firings leading to the collision of the shells is :

 \sf \:  \: \Delta t = t_1-t_2 \\  \\

:\longmapsto \sf \Delta t = 40 - 30 \\  \\

\blue{ \large :\longmapsto  \underline {\boxed{{\bf \Delta t  = 10 \: s} }}}

Hence Time interval between firings leading to the collision of the shells is 10 second.

Attachments:

Clαrissα: Stupendous !! ❤️
Similar questions