Math, asked by frequntly, 1 month ago

⚘ Question :
A flooring tile in the shape of a rhombus has diagonals of length 80 cm and 120 cm, how many such tiles will be required to cover a floor of area 360 m²?​

Answers

Answered by MarsalaMagic
384

⚘ Question :

A flooring tile in the shape of a rhombus has diagonals of length 60 cm and 80 cm, how many such tiles will be required to cover a floor of area 360 m²?

\begin{gathered}{\textsf{\textbf{\underline{\underline{Given :}}}}}\end{gathered}

➳A flooring tile in the shape of a rhombus has diagonals of length 80 cm and 120 cm.

\begin{gathered}{\textsf{\textbf{\underline{\underline{To Find :}}}}}\end{gathered}

➳ How many such tiles will be required to cover a floor of area 360 m²

\begin{gathered}{\textsf{\textbf{\underline{\underline{ Formula required:}}}}}\end{gathered}

 \red{\dag{\underline{\boxed{\sf{Area \: of \: Rhombus = \dfrac{1}{2} \times (D_1) \times (D_2)}}}}†}{\begin{gathered}\end{gathered}}

\begin{gathered}{\textsf{\textbf{\underline{\underline{Solution :}}}}}\end{gathered}

\red\bigstar first \: \:we \:  convert \:  the \:  lenght \:  of \:  diagonals  \: into  \: m. \:

  \red{we \: know \: that }\\  \implies{\sf{1 \: cm = \dfrac{1}{100} \: m}}

 \implies{\sf{80\: cm = {\cancel\dfrac{80}{100}} = \dfrac{8}{10} \: m }}

\implies{\sf{120\: cm = {\cancel\dfrac{120}{100}} = \dfrac{12}{10} \: m }}

The lenght of diagonal are Rhombus is 8/10 m and 12/10 m..

\begin{gathered}\end{gathered}\red\bigstar  Area  \: of \:  rhombus.

 \star{{\sf{Area \: of \: Rhombus = \dfrac{1}{2} \times (D_1) \times (D_2)}}}

{ \star{\sf{Area \: of \: Rhombus = \dfrac{1}{2} \times \dfrac{8}{10} \times \dfrac{12}{10} }}}

{ \star{\sf{Area \: of \: Rhombus = \dfrac{1}{2} \times 0.8\times 1.2 }}}

{: \star{\sf{Area \: of \: Rhombus = \dfrac{1 \times 0.8 \times 1.2}{2}}}}

{ \star{\sf{Area \: of \: Rhombus = \dfrac{0.96}{2}}}}

{ \star{\sf{Area \: of \: Rhombus = \cancel{\dfrac{0.96}{2}}}}}

{\star{\sf{Area \: of \: Rhombus = 0.48 \: {m}^{2}}}}:

{\bigstar\underline{\boxed{\sf{\red{Area \: of \: Rhombus} = \purple{0.24 \: {m}^{2}}}}}}★

★ the number of tiles will be required to cover a floor of area 360 m².

{\implies{\sf{Number \: of \: Tiles = \dfrac{Area \: of \: floor }{Area \: of \: one \: tile}}}}

{ \implies{\sf{Number \: of \: Tiles = \dfrac{360}{0.48}}}}

★For removing the decimal point we multiply it by 100.

{ \implies{\sf{Number \: of \: Tiles = \dfrac{360 \times 100}{0.48 \times 100}}}}

{\implies{\sf{Number \: of \: Tiles = \dfrac{36000}{48}}}}

{ \implies{\sf{Number \: of \: Tiles = \cancel{\dfrac{36000}{48}}}}}

{ \implies{\sf{Number \: of \: Tiles = 750 \: Tiles}}}

\bigstar{\underline{\boxed{\sf{\red{Number \: of \: Tiles}= \purple{750 \: Tiles}}}}}★

750 tile will be required to cover a floor of area 360 m².

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions