Math, asked by Anonymous, 1 month ago

Question :-

A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each
cow be getting?


Kindly don't spam.
Quality answers only.

Answers

Answered by ItzShizuka50
65

Given :

  • A rhombus shaped field has green grass for 18 cows to graze.
  • If each side of the rhombus is 30 m and its longer diagonal is 48 m.

To Find :

  • How much area of grass field will each
  • cow be getting?

Solution :

⇝Let the field be ABCD

⇝It is Given that,

\sf\pink{➵Side \: of \: Rhombus = 30m }

\sf\pink{➵AB = BC = CD = AB = 30m</p><p>}

\sf\red{➢Also, Diagonal = 48m}

\sf\red{➢BD = 48m}

⇝Area of rhombus = Area : ABD + Area : BCD

\sf\orange{ †Let's \:  Finding  \: the \:  area \:  ABD}

Area of triangle triangle

\sf\pink{ =  \sqrt{s(s - a)(s - b)(s - c)} }

Here, s is the semi-perimeter,

and a,b,c are the sides of a triangle

Here,

\sf\pink{S =  \frac{a + b + c}{2} =  \frac{30 + 30 + 48}{2}   =  \frac{100}{2}  = 54m }

Area of triangle ABD

\sf\pink{ =  \sqrt{s(s - a)(s - b)(s - c)} }

Putting a = 30m, b = 30m, c = 48m & s = 54

\sf\pink{  = \sqrt{54(54 - 30)(54 - 30)(54 - 48)} }

 = \sf\pink{ \sqrt{54(24)(24)(6)} }

\sf\pink{ =  \sqrt{(6 \times 9) \times (24 \times 24) \times (6)} }

\sf\pink{ =  \sqrt{(6 \times 6) \times (9) \times (24 \times 24) } }

 \sf = \pink{ \sqrt{(6²) \times (</p><p>3²) \times (24²)} }

\sf = \pink{ \sqrt{(6²)} \times  \sqrt{(3²)}  \times  \sqrt{(24²)m}  }

\sf\pink{ = 6 \times 3 \times 24}

\sf\pink{ = 432 {m}^{2} }

Hence,

Area of ABD 432m²

Similarly,

Area BCD = 432m²

So, Area of Rhombus ABCD = Area ABD + Area BCD

= 432 + 432

= 864m²

Answered by Anonymous
62

Given :-

  • ➵ A rhombus shaped field has green grass for 18 cows to graze.
  • ➵ Each side of the rhombus is 30 m and its longer diagonal is 48 m.

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

To Find :-

  • ➵ How much grass will each cow get ?

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Solution :-

Formula Used :

{\large{\red{\bigstar \:  \: {\orange{\underbrace{\underline{\blue{\bf{Area{\small_{(Triangle)}} = \sqrt{s(s - a)(s - b)(s - c)}  }}}}}}}}}

  • After the diagonal is applied the rhombus will be divided into 2 equilateral triangles whose sides will be :

Sides :

➳ 1st side = 30 m

➳ 2nd side = 30 m

➳ 3rd side = 48 m

Area of the triangle :

✏ First finding the semi - perimeter :

{\large{\longrightarrow{\bf{S = \frac{a + b + c}{2}  }}}}

{\large{\longrightarrow{\bf{S = \frac{30 + 30+48}{2}  }}}}

{\large{\longrightarrow{\bf{S = {\cancel\frac{108}{2}  }}}}}

{\large{\orange{\dashrightarrow{\green{\underline{\bf{S = 54 m}}}}}}}

Than Area :

{\large{\longrightarrow{\bf{Area =  \sqrt{s(s - a)(s - b)(s - c)} }}}}

{\large{\longrightarrow{\bf{Area =  \sqrt{54(54 - 30)(54 - 30)(54 - 48)} }}}}

{\large{\longrightarrow{\bf{Area =  \sqrt{54 \times 24 \times   6} }}}}

{\large{\longrightarrow{\bf{Area =  \sqrt{6 \times 3\times   24} }}}}

{\large{\orange{\dashrightarrow{\green{\underline{\bf{Area = 432 m²}}}}}}}

Area of Rhombus :

{\large{{\longmapsto{\bf{Area{\small_{(Rhombus)}} = Area{\small_{(Triangle)}}  \times 2}}}}}

{\large{{\longmapsto{\bf{Area{\small_{(Rhombus)}} =  {432 \: m}^{2}   \times 2}}}}}

{\large{\red{:{\longmapsto{\purple{\underline{\overline{\boxed{\bf{Area = 864 m²}}}}}}}}}}

Each cow will graze :

{\large{\longrightarrow{\bf{Area{\small_{(Rhombus)}}  \div No.{\small_{(Cows)}}}}}}

{\large{\longrightarrow{\bf{864 \div 18}}}}

{\large{\red{:{\longmapsto{\purple{\underline{\overline{\boxed{\bf{Area = 48 \:  m²}}}}}}}}}}

Hence :

➻ Each cow will graze 48 m².

▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃

Attachments:
Similar questions