Math, asked by TheIron0man, 19 days ago

Question:

A trader sells three motorcycles for Rs 5400, Rs 3300 and Rs 5250 respectively. He gains 20% on the first motorcycle, 10% profit on the second and 25/8% loss on the total. Find the cost price of the third.

 \sf{dont \: spam}

Answers

Answered by Anonymous
10

Answer:

Question :

A trader sells three motorcycles for Rs 5400, Rs 3300 and Rs 5250 respectively. He gains 20% on the first motorcycle, 10% profit on the second and 25/8% loss on the total. Find the cost price of the third.

\begin{gathered}\end{gathered}

Answer :

  • ➤ The cost price of third motorcycle is Rs.6900.

\begin{gathered}\end{gathered}

Given :

  • ➤ A trader sells three motorcycles for Rs 5400, Rs 3300 and Rs 5250 respectively.
  • ➤ Trader gains 20% on the first motorcycle, 10% profit on the second and 25/8% loss on the total.

\begin{gathered}\end{gathered}

To Find :

  • ➤ The cost price of third motorcycle.

\begin{gathered}\end{gathered}

Using Formulas :

{\longrightarrow{\small{ \underline{\boxed{\sf{C.P =  \dfrac{100}{100 +  Gain\%} \times S.P}}}}}}

{\longrightarrow{\small{ \underline{\boxed{\sf{C.P =  \dfrac{100}{100 - Loss\%} \times S.P}}}}}}

  • C.P = Cost Price
  • S.P = Selling Price

\begin{gathered}\end{gathered}

Solution :

\pink\bigstar Finding the cost price of first motorcycle :

  • S.P = Rs.5400
  • Gain% = 20%

{\longrightarrow \: \: {\sf{C.P =  \dfrac{100}{100 +  Gain\%} \times S.P}}}

{\longrightarrow \: \: {\sf{C.P =  \dfrac{100}{100 +  20} \times 5400}}}

{\longrightarrow \: \: {\sf{C.P =  \dfrac{540000}{120}}}}

{\longrightarrow \: \: {\sf{C.P =  \cancel{\dfrac{540000}{120}}}}}

{\longrightarrow \: \: {\sf{\red{C.P = Rs.4500}}}}

∴ The cost price of first motorcycle is Rs.4500.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink\bigstar Finding the cost price of second motorcycle :

  • S.P = Rs.3300
  • Gain% = 10%

{\longrightarrow \: \: {\sf{C.P =  \dfrac{100}{100 +  Gain\%} \times S.P}}}

{\longrightarrow \: \: {\sf{C.P =  \dfrac{100}{100 + 10} \times 3300}}}

{\longrightarrow \: \: {\sf{C.P =  \dfrac{330000}{110}}}}

{\longrightarrow \: \: {\sf{C.P   = \cancel{\dfrac{330000}{110}}}}}

{\longrightarrow \: \: {\sf{\red{C.P =  Rs.3000}}}}

∴ The cost price of second motorcycle is Rs.3000.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink\bigstar Finding the cost price of third motorcycle :

  • Let the cost price of third motorcycle be Rs.x.

∴ The cost price of third motorcycle is Rs.x.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink\bigstar Finding the total selling price of three motorcycles :

  • ↠ S.P of first motorcycle = Rs.5400
  • ↠ S.P of second motorcycle = Rs.3300
  • ↠ S.P of third motorcycle = Rs.5250

{\longrightarrow \:  \: \sf{Total \:  S.P = 5400 + 3300 + 5250}}

{\longrightarrow \:  \:{\sf{\purple{Total \:  S.P = Rs.13950}}}}

∴ The total selling price of three motorcycles is Rs.13950.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink\bigstar Finding the total cost price of three motorcycles :

  • ↠ C.P of first motorcycle = Rs.4500
  • ↠ C.P of second motorcycle = Rs.3000
  • ↠ C.P of third motorcycle = Rs.x

\longrightarrow \: {\sf{Total \: C.P = 4500 + 3000 + x}}

\longrightarrow \: {\sf{\purple{Total \: C.P = Rs.7500 + x}}}

∴ The total cost price of three motorcycles is Rs.7500+x.

  ⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\pink\bigstar Now,

  • Loss% = 25/8%
  • Selling Price = Rs.13900
  • Cost Price = 7500+x

We can see that the cost price is more than selling

  • C.P > S.P

{\longrightarrow \:  \: {\sf{C.P =  \dfrac{100}{100 - Loss\%} \times S.P}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{100}{100 -  \frac{25}{8}} \times 13950}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{100 \times 13950}{  \frac{800 - 25}{8}}}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{1395000}{  \frac{775}{8}}}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{1395000}{775} \times 8}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{1395000 \times 8}{775}}}}

{\longrightarrow \:  \: {\sf{7500 + x=  \dfrac{11160000}{775}}}}

{\longrightarrow \:  \: {\sf{7500 + x=   \cancel{\dfrac{11160000}{775}}}}}

{\longrightarrow \:  \: {\sf{7500 + x=  14400}}}

{\longrightarrow \:  \: {\sf{ x=  14400 - 7500}}}

{\longrightarrow \:  \: {\sf{\purple{ x= Rs.6900}}}}

∴ The cost price of third motorcycle is Rs.6900.

\begin{gathered}\end{gathered}

Learn More :

\boxed{\begin{minipage}{5cm}\bigstar$\:\underline{\textbf{Profit and Loss Formulas :}}\\\\ \\ \sf {\textcircled{\footnotesize\textsf{1}}} \:S.P. =$\sf \bigg\lgroup\dfrac{100 + Profit \%}{100}\bigg\rgroup \times 100$\\\\\\ \sf {\textcircled{\footnotesize\textsf{2}}} \:\:C.P. = $\sf \dfrac{S.P. \times 100}{100 + Profit \%}$\\\\\\\sf{\textcircled{\footnotesize\textsf{3}}} \:\:Profit = $\sf \dfrac{Profit \% \times C.P.}{100}$\\\\\\ \sf{\textcircled{\footnotesize\textsf{4}}} \: \:Profit (gain) = S.P. - C.P. \\\\\\\sf{\textcircled{\footnotesize\textsf{5}}} \: \:$\sf Profit \% = \dfrac{Profit}{C.P.} \times 100$\end{minipage}}

\rule{220pt}{3pt}

Similar questions