Math, asked by tirth5440, 10 months ago

Question
(a) Use factor theorem to factorise 6x3 + 17x2 + 4x - 12 completely.​

Answers

Answered by knjroopa
37

Step-by-step explanation:

Given Use factor theorem to factorise 6x3 + 17x2 + 4x - 12 completely.

Now let us find whether (x + 2) is a factor.

  • So we have f(x) = 6x^3 + 17x^2 + 4x – 12
  •           So   f(-2) = 6(- 2)^3 + 17 (-2)^2 + 4(-2) – 12
  •                            = - 48 + 68 – 8 – 12
  •                               = 68 – 68
  •                                = 0
  • Dividing by (x + 2) we get  
  •         So   x + 2) 6x^3 + 17 x^2 + 4x – 12 (6x^2 + 5x – 6
  •                           6x^3 + 12x^2
  •                   ------------------------------------------------------------
  •                                        5x^2 + 4x – 12
  •                                        5x^2 + 10x  
  •                          -----------------------------------------------
  •                                                 -6x – 12
  •                                                 -6x – 12
  •                               ------------------------------------------
  •                                                       0
  • So factors of  f(x) are
  •    (x + 2) (6x^2 + 5x – 6)
  •    (x + 2) (6x^2 + 9x – 4x – 6)
  •     (x + 2) (3x(2x + 3) – 2(2x + 3)

    (x + 2) (2x + 3) (3x – 2) are the factors.

Reference link will be

https://brainly.in/question/15740265

Similar questions