Math, asked by Anonymous, 1 year ago

♠ QUESTION:

APPROPRIATENESS MATTERS.

Attachments:

Answers

Answered by Anonymous
16
\boxed{\mathsf{ Solution : }}

Let the first term is 'a' and the common difference is 'd'.

\mathsf{ Using \: Formula \: : } \\ \\\boxed{\mathsf{ \implies \: S_n \: = \dfrac{n}{2}[ \: 2a \: + \: ( \: n \: - 1 \: )d \: ] }}

\mathsf{ When \: number \: of \: terms \: = \: n \: ,} \\ \\\mathsf{ \implies \: S_1 \: = \: \dfrac{n}{2}[ \: 2a \: + \: ( \: n \: - \: 1 \: )d \: ] \qquad.......( \: 1 \: ) } \\ \\

\mathsf{ When \: number \: of \: terms \: = \: 2n \: , } \\ \\\mathsf{ \implies \: S_2 \: = \: \dfrac{2n}{2}[ \: 2a \: + \: ( \: 2n \: - \: 1 \: )d \: ]} \\ \\\mathsf{ \implies \: S_2 \: = \: n[ \: 2a \: + \:( \: 2n \: - \: 1 \: )d \: ] \qquad.......( \: 2 \: )}\\ \\

\mathsf{ When \: number \: of \: terms \: = \: 3n \:, } \\ \\\mathsf{ \implies \: S_3 \: = \: \dfrac{ 3n}{2}[ \: 2a \: + \: ( \: 3n \: - \: 1 \: )d \: ] \qquad.......( \: 3 \: )} \: \\ \\\mathsf{ \implies \: \dfrac{ S_3}{3} \: = \: \dfrac{n}{2}[ \: 2a \: + \: ( \: 3n \: - \: 1 \: )d \: ] \qquad.......( \: 4 \: )}

\ \mathsf{ Subtracting \: ( \: 1 \: ) \: from \: ( \: 2 \: ) : } \\ \\\mathsf{ \implies \:S_2 \: - \:S_1 \: = \: n[ \: 2a \: + \:( \: 2n \: - \: 1 \: )d \: ] \: - \: \dfrac{n}{2}[ \:2a \: + \: ( \: n \: - \: 1 \: )d \: ]} \\ \\ \mathsf{\implies \:S_2 \: - \:S_1 \: = \: n[ \: 2a \: + \: 2nd \: - d \: ] \: - \: \dfrac{n}{2}[\: 2a \: + \: nd \: - \: d \: ]} \\ \\ \mathsf{ \implies \: S_2 \: - \: S_1 \: = \dfrac{2n[\: 2a \: + \: 2nd \: - \: d \: ] \: - \: n[ \: 2a \: + \: nd \: - \:d \: ]}{2}} \\ \\ \mathsf{\implies \: S_2 \: - \: S_1 \: = \: \dfrac{4an \: + \: 4 {n}^{2}d \: - \: 2nd \: - \: 2an \: - \: {n}^{2}d \: + nd }{2}} \\ \\ \mathsf{ \implies \: S_2 \: - \: S_1 \: = \: \dfrac{2an \: + \: 3{n}^{2}d \: - nd }{2} } \\ \\ \mathsf{ \implies \: S_2 \: - \: S_1 \: = \: \dfrac{n}{2}[ \: 2a \: + \: 3nd \: - \: d ]} \\ \\ \mathsf{ \implies \: S_2 \: - \: S_1 \: = \: \dfrac{n}{2}[ \: 2a \: + ( \: 3n \: - \: 1 \: )d \: ] } \\ \\ \mathsf{ Substitute \: the \: value \: of \: ( \: 4 \: ) , } \: \\ \\ \mathsf{ \implies \:( \: S_2 \: - \: S_1 \: ) \: = \: \dfrac{S_3}{3} } \\ \\\mathsf{ \therefore \: S_3 \: = \: 3( \: S_2 \: - \: S_1 \: )}

\boxed{\mathsf{\underline{Proved \: !! }}}

RiyaSharma01: Itni mehnat omggggg really appreciable answers bro ☺☺☺❤❤❤❤❤❤❤❤❤❤❤❤
Anonymous: Thanks sis !!
Anonymous: REALLY! COMMENDABLE answer. THANKS for taking trouble. ツ ☺️
Similar questions