Math, asked by kamalhajare543, 1 day ago

Question:-
༒ Bʀᴀɪɴʟʏ Sᴛᴀʀs

༒Mᴏᴅᴇʀᴀᴛᴇʀs

༒Other best user
 \sf \: For  \: A  \: Matrix \:   \: A \:  \longrightarrow\rm\sf \: \: - \begin{gathered}\sf \left | \begin{array}{ccc}0&0& 1\\2&1&1\\1&1&1\end{array}\right |  \end{gathered} \:  {A}^{ - 1}   \: is \:  given \:  by  \:  \\
\  \textless \ br /\  \textgreater \  \sf 1) A^2+2A+3I \qquad \qquad \qquad 2) A-3I \\ \\\sf  3) A^2-2A \qquad \qquad \qquad4) A^2-2A-I
No Spam. ​

Answers

Answered by mathdude500
67

\large\underline{\sf{Solution-}}

Given matrix is

\rm \: A = \begin{gathered}\sf \left [ \begin{array}{ccc}0&0& 1\\2&1&1\\1&1&1\end{array}\right ] \end{gathered}

We know, Characteristic equation is given by

\rm \:  |A - k \: I|  \:  =  \: 0

So,

\rm \: \begin{gathered}\sf \left | \begin{array}{ccc} - k&0& 1\\2&1 - k&1\\1&1&1 - k\end{array}\right | \end{gathered} = 0

\rm \:  - k[ {(1 - k)}^{2} - 1]  + 1(2 - 1 + k) = 0

\rm \:  - k[1 +  {k}^{2}  - 2k - 1]  + (1 + k) = 0

\rm \:  - k[{k}^{2}  - 2k] + (1 + k) = 0

\rm \:  -{k}^{3}  +  2 {k}^{2} + 1 +  k= 0

\rm \:  -({k}^{3}  -  2 {k}^{2} -  1 - k)= 0

\rm \: {k}^{3}  -  2 {k}^{2} -   k - 1= 0

Now, We know

Cayley Hamilton Theorem states that every square matrix satisfy its characteristic equation.

So, A must satisfy the above characteristic equation.

\rm \: {A}^{3}  -  2 {A}^{2}  -   A  - I= 0

\rm \: Now\:premultiply \: by \:  {A}^{ - 1} \: on \: both \: sides

\rm \: {A}^{ - 1} {A}^{3}  -  2{A}^{ - 1}  {A}^{2} -  {A}^{ - 1} A  - {A}^{ - 1}  I= 0

\rm \: ({A}^{ - 1}A) {A}^{2}  -  2({A}^{ - 1}  {A})A -  I  - {A}^{ - 1} = 0

\rm \:  I{A}^{2}  -  2IA  -   I  - {A}^{ - 1} = 0

\rm \:  {A}^{2}  -  2A -  I - {A}^{ - 1} = 0

\rm \: \rm\implies \: \: {A}^{ - 1}  \:  =  \:  {A}^{2}  -  2A -  I

So, Option (4) is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

BASIC RESULT USED

\rm \: {A}^{ - 1} A = I \\

\rm \: AI \:  =  \: IA \:  =  \: A \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by Abhijithajare
52

Answer:

Answer is given in attachment

Attachments:
Similar questions