Math, asked by Anonymous, 4 months ago

question..

don't spam ❌​

Attachments:

Answers

Answered by SuitableBoy
41

{\huge{\underline{\underline{\bf{Question :-}}}}}

Find x

 \large \rm \:  \dfrac{1 -  \frac{1 +  \frac{1 - x}{3} }{3} }{4}  = 1

{\huge{\underline{\underline{\bf{Answer\checkmark}}}}}

Take LCM

 \rm \mapsto \large \:  \frac{1 -  \frac{  \frac{3 + 1 - x}{3} }{3} }{4}  = 1 \\

 \large\mapsto \rm  \frac{1 -  \frac{4 - x}{9} }{4}  = 1 \\

 \large \rm \mapsto \:  \frac{9 - (4 - x)}{9}  = 1 \times 4

 \mapsto \rm \: 9 - 4 + x = 4 \times 9

 \mapsto \rm \: 5 + x = 36

 \mapsto  \rm \: x = 36 - 5

  \large\mapsto \boxed{ \rm \: x = 31}

So ,

For x = 31 , this equation is valid ..

Verification :

Put x = 31 in LHS

 \rm \large  \frac{1 -  \frac{1 +  \frac{1 - 31}{3} }{3} }{4}  \\

  \large\implies \rm  \frac{1 -  \frac{1 +  \frac{ -  \cancel{30}}{ \cancel3} }{3} }{4}  \\

 \large \implies \rm \:  \frac{1 -  \frac{1 - 10}{3} }{4}  \\

 \large \implies \rm \:  \frac{1 -  \cancel{  \frac{ - 9}{3}  }}{4}  \\

 \implies \rm \:  \frac{1 -  (- 3)}{4}  \\

 \implies \rm \:  \frac{1 + 3}{4}  \\

 \implies  \cancel{ \frac{4}{4}}  \\

 \implies \: 1

So ,

LHS = RHS , hence verified ..

Similar questions
Math, 10 months ago