Math, asked by Itzheartcracer, 1 month ago

Question!!
express the given complex number in the form of (a + ib)

 \sf { \bigg( - 2 -  \dfrac{1}{3}  i \bigg) }^{3}
Don't spam in the question...​

Answers

Answered by shivasinghmohan629
0

Step-by-step explanation:

hope it helps you please mark me brainlist

Attachments:
Answered by mathdude500
18

\large\underline{\sf{Solution-}}

Given complex number is

\rm :\longmapsto\:\sf { \bigg( - 2 - \dfrac{1}{3} i \bigg) }^{3}

can be rewritten as

\rm \:  =  \: {\bigg[ - \sf { \bigg(2 +  \dfrac{i}{3} \bigg) }\bigg]}^{3}

\rm \:  =   \:  - \: {\bigg[\sf { \bigg(2 +  \dfrac{i}{3} \bigg) }\bigg]}^{3}

We know,

\boxed{ \tt{ \:  {(x + y)}^{3} =  {x}^{3} +  {3x}^{2}y +  {3xy}^{2} +  {y}^{3} \: }}

So, using this identity, we get

\rm \:  =   - \:\bigg[ {(2)}^{3} + 3 {(2)}^{2} \times \dfrac{i}{3} + 3 (2) {\bigg[\dfrac{i}{3} \bigg]}^{2} +  {\bigg[\dfrac{i}{3} \bigg]}^{3}\bigg]

\rm \:  =  -  \:\bigg[8 + 4i + \dfrac{2}{3} {i}^{2} + \dfrac{ {i}^{3} }{27}\bigg]

We know,

\rm :\longmapsto\:\boxed{ \tt{ \:  {i}^{2} =  - 1}} \:  \:  \: and \:  \: \:  \boxed{ \tt{ \:  {i}^{3} =  -  \: i \: }}

So, on substituting, these values, we get

\rm \:  =  -  \:\bigg[8 + 4i  -  \dfrac{2}{3}  - \dfrac{i }{27}\bigg]

\rm \:  =  -  \:\bigg[\bigg(8  -  \dfrac{2}{3}\bigg)  + i\bigg(4 - \dfrac{1}{27}\bigg)\bigg]

\rm \:  =  -  \:\bigg[\bigg(\dfrac{24 - 2}{3}\bigg)  + i\bigg(\dfrac{108 - 1}{27}\bigg)\bigg]

\rm \:  =  -  \:\bigg[\bigg(\dfrac{22}{3}\bigg)  + i\bigg(\dfrac{107}{27}\bigg)\bigg]

\rm \: \:   =  -  \:  \dfrac{22}{3}  -  \:  i\dfrac{107}{27}

Hence,

\red{\bf\implies \:\boxed{ \tt{ \: \sf { \bigg( - 2 - \dfrac{1}{3} i \bigg) }^{3}  =  -  \:  \dfrac{22}{3}  -  \:  i\dfrac{107}{27} \: }}}

More to know :-

\boxed{ \tt{ \:  |z| =   |\overline{z}| \: }}

\boxed{ \tt{ \: z. \: \overline{z} \:  =  { |z| }^{2} \: }}

\boxed{ \tt{ \: \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1  -  z_2} = \overline{z_1}  -  \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1  \times   z_2} = \overline{z_1}  \times  \overline{z_2} \: }}

\boxed{ \tt{ \: \overline{z_1   \div    z_2} = \overline{z_1}   \div   \overline{z_2} \: }}

Similar questions