Question :
Factorise
(1) x^2 - 1 -2a - a^2
(2) 1 + 2ab - ( a^2 + b^2 )
Answers
Answered by
24
Answer:
(1). ( x - 1 - a ) ( x + 1 + a ).
(2). ( 1 - a + b ) ( 1 + a -b ).
Step-by-step explanation:
Factorise :
(1). x² - 1 - 2a - a²
(2). 1 + 2ab - (a² + b²)
Solution :
We have
(1). x² - 1 - 2a - a²
= x² - ( 1 + 2a + a² )
= x² - ( 1 + a )²
= {x-( 1 + a )} { x + ( 1 + a )}
[ ∵ (a² - b²) = (a + b) (a - b)]
= ( x - 1 - a ) ( a + 1 + a).
= ∴ ( x² - 1 - 2a - a² )
= ( x - 1 - a ) ( x + 1 + a ).
(2) 1 + 2ab - ( a² + b²)
= 1 - ( a² + b² - 2ab )
= 1² - ( a - b )²
= {1 - (a + b)} {1+ (a-b}
[ ∵ ( a²+b²)
= (a+b) (a-b)= ( 1 - a + b ) (1 + a- b)
= ∴ 1 + 2ab - ( a² + b² )
= ( 1 - a + b ) ( 1 + a -b )
Similar questions