CBSE BOARD X, asked by Anonymous, 8 months ago

Question :-

Find derivative of given functions w.r.t independent variable Y = 2x + 5/ 3x - 2

❌ No Spam ❌​

Answers

Answered by Anonymous
133

\underline\red{{\rm Answer - }}

\rm \dfrac{dy}{dx} = \dfrac{ - 19}{{(3x - 2)}^{2}}

\underline{\bf Solution - }

\underline{\sf Given - }

Function of dependent variable with respect to independent variable -

\rm Y  =  \dfrac{2x \: + \: 5}{3x \: - \: 2}

  • \rm u = 2x + 5 ( let )
  • \rm v = 3x - 2 ( let )

\underline{\bf To \:find - }

Derivative of the function - \sf \dfrac{dy}{dx}

\underline{\bf Formula \:used - }

Quotient rule -

\boxed{\sf \gray{ \dfrac{d}{dx}\bigg(\dfrac{u}{v}\bigg) = \dfrac{ v \Bigg(\dfrac{du}{dx}\Bigg) - u\dfrac{dv}{dx}}{{v}^{2}}}}

\boxed{\sf \gray{ \dfrac{d(c)}{dx}  = 0}}

where c is any constant.

━━━━━━━━━━━

\sf\implies \dfrac{du}{dx} = \dfrac{d(2x + 5)}{dx}

\sf  \implies\dfrac{d(2x^{1}  + 5)}{dx}

\sf \implies 2 + 0

\implies \sf\frac{du}{dx} = 2

\sf \implies \dfrac{dv}{dx} = \dfrac{d(3x - 2)}{dx}

\sf \implies \dfrac{d(3x^{1} - 2)}{dx}

\sf \implies 3 - 0

\sf \implies \dfrac{dv}{dx} = 3

  • \tt u = 2x + 5
  • \tt v = 3x - 2

  • \tt \dfrac{du}{dx} = 2

  • \tt \dfrac{dv}{dx} = 3

Substituting the value in formula -

\sf \dfrac{d}{dx}(\frac{u}{v}) = \frac{ v (\frac{du}{dx}) - u\frac{dv}{dx}}{{v}^{2}}

\sf \implies \dfrac{dy}{dx} = \dfrac{ (3x - 2 )(2) - (2x + 5)(3)}{{(3x - 2)}^{2}} \\

\sf \implies \dfrac{6x - 4 - (6x + 15)}{{(3x - 2)}^{2}}

\sf \implies \dfrac{ \cancel{6x} - \: 4 \: \cancel{- 6x}  - 15}{{(3x - 2)}^{2}}

\sf \implies \dfrac{ - 19}{{(3x - 2)}^{2}}

\sf \implies \dfrac{ - 19}{{(3x - 2)}^{2}}

\sf \implies \dfrac{dy}{dx} = \dfrac{ - 19}{{(3x - 2)}^{2}}

Similar questions