Math, asked by rajkishore31, 4 months ago

Question:-
Find the angle between the lines y - √3x - 5 = 0 and √3y - x + 6 = 0.

Need the answer ASAP!​

Answers

Answered by Anonymous
79

Given lines

  • There are two given lines :-

\tt\longrightarrow{y - \sqrt{3}x - 5 = 0}

\tt\longrightarrow{\sqrt{3}y - X + 6 = 0}

To find

  • Angle between the given two lines.

Solution

  • We have to equation of lines, given in the question.

First line

\tt\longrightarrow{y - \sqrt{3}x - 5 = 0}

\mathcal{\bigg\lgroup{In\: slope\: intercept\: form}\bigg\rgroup}

\tt\longrightarrow{y = \sqrt{3}x + 5 }⠀⠀.....[1]

Second line

\tt\longrightarrow{\sqrt{3}y - X + 6 = 0}

\mathcal{\bigg\lgroup{In\: slope\: intercept\: form}\bigg\rgroup}

\tt\longrightarrow{y = \dfrac{1}{\sqrt{3}}x - 2\sqrt{3}}⠀⠀.....[2]

\: \: \: \: \: \: \: \: \: \underline{\sf{\red{According\: to\: slope\: intercept\: form}}}

\sf\longmapsto{Slope\: of\: first\: line\: (m_1) = \sqrt{3}}

\sf\longmapsto{Slope\: of\: second\: line\: (m_2) = \dfrac{1}{\sqrt{3}}}

  • The acute angle (θ) between two lines is given by

\large{\boxed{\boxed{\bf{tan \theta = \bigg| \dfrac{m_2 - m_1}{1 + m_1 m_2} \bigg|\: \: \: }}}}

\: \: \: \: \: \: \: \: \: \underline{\sf{\red{Putting\: the\: values}}}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{\dfrac{1}{\sqrt{3}} - \sqrt{3}}{1 + \sqrt{3} \times \dfrac{1}{\sqrt{3}}}\bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{\dfrac{1 - 3}{\cancel{\sqrt{3}}}}{\dfrac{\sqrt{3} + \sqrt{3}}{\cancel{\sqrt{3}}}}\bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{-2}{2\sqrt{3}} \bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \bigg| \dfrac{-1}{\sqrt{3}} \bigg|}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = \dfrac{1}{\sqrt{3}}}

\rm:\implies\: \: \: \: \: \: \: \: {tan \theta = tan30°}

\rm:\implies\: \: \: \: \: \: \: \: {\underline{\boxed{\orange{\theta = 30°}}}}

Hence,

  • Angle between the two given lines is either 30° or 180° - 30° = 150°.

━━━━━━━━━━━━━━━━━━━━━━

Answered by Asterinn
46

We know that :-

If slope of two lines are m₁ and m₂ then acute angle θ between two lines is given as :

 \sf tan\theta = \bigg | \dfrac{m_1 -m_2 }{1 +m_1 m_2 }  \bigg |

We also know that :-

 \tt slope (m) \: \: of \:\: line \: \: ax + by + c = 0 \: is  :  \\  \\  \boxed{ \sf m =  \frac{ - a}{b} }

\tt slope (m _1) \: \: of \: line \: \: y  -  \sqrt{3}  x - 5 = 0 :  \\  \\ \rightarrow \sf m _1 =   - \: \frac{ -  \sqrt{3} }{1}  =  \sqrt{3}  \\  \\  \\ \tt slope (m _2) \: \: of \: line \: \:  \sqrt{3} y  -    x  + 6 = 0 :  \\  \\  \sf \rightarrow m _2 =   - \frac{ - 1}{ \sqrt{3} }  = \frac{ 1}{ \sqrt{3}}

\sf \longrightarrow tan\theta = \bigg | \dfrac{ \sqrt{3}  - \frac{1}{ \sqrt{3} }  }{1 +(\sqrt{3} \times \frac{1}{ \sqrt{3}})  }  \bigg | \\  \\ \sf \longrightarrow tan\theta = \bigg | \dfrac{ \frac{3 - 1}{ \sqrt{3} }  }{1 +1}  \bigg |\\  \\ \sf \longrightarrow tan\theta = \bigg | \dfrac{ \frac{2}{ \sqrt{3} }  }{2}  \bigg |\\  \\ \sf \longrightarrow tan\theta = \bigg |  \frac{1}{ \sqrt{3} }   \bigg |\\  \\ \sf \longrightarrow tan\theta =   \frac{1}{ \sqrt{3} }  \\  \\  \therefore  \theta \:  = 30^{\circ}

Angle between the lines y - √3x - 5 = 0 and √3y - x + 6 = 0 = 30°

Similar questions
Math, 4 months ago