Math, asked by HA7SH, 3 months ago

Question:-

Find the area of triangle, two sides of which are 8cm and 11cm and the perimeter is 32cm (See the figure).

Plz don't spam...​

Attachments:

Answers

Answered by Rahulkumar000
3

Answer:

= 1144cm²

Step-by-step explanation:

I hope it's helpful.....

Attachments:
Answered by IdyllicAurora
30

\\\;\underbrace{\underline{\sf{Understanding\;the\;Concept\;:-}}}

Here the Concept of Perimeter and Heron's Formula has been used . First we shall find the third side of the triangle using the Perimeter and then find its semi perimeter . After finding that we can use Heron's Formula to find the Area of Triangle .

Let's do it !!

_____________________________________________

Formula Used :-

\\\;\boxed{\sf{Sum\;of\;all\;Sides\;=\;\bf{Perimeter}}}

\\\;\boxed{\sf{Semi\:-\:Perimeter\;of\;\Delta\;=\;\bf{\dfrac{Sum\;of\;all\;sides}{2}}}}

\\\;\boxed{\sf{Area\;of\;\Delta\;=\;\bf{\sqrt{s(s\;-\;a)(s\;-\;b)(s\;-\;c)}}}}

_____________________________________________

Solution :-

Given,

» Perimeter of ∆ABC = 32 cm

» Length of AC = 11 cm

» Length of BC = 8 cm

_____________________________________________

~ For the length of AB ::

We know that,

\\\;\sf{\pink{:\rightarrow\;\;Sum\;of\;all\;Sides\;=\;\bf{Perimeter}}}

By applying values, we get,

\\\;\sf{:\Longrightarrow\;\;AB\;+\;BC\;+\;AC\;=\;\bf{32}}

\\\;\sf{:\Longrightarrow\;\;AB\;+\;8\;+\;11\;=\;\bf{32}}

\\\;\sf{:\Longrightarrow\;\;AB\;+\;19\;=\;\bf{32}}

\\\;\sf{:\Longrightarrow\;\;AB\;=\;\bf{32\;-\;19}}

\\\;\bf{:\Longrightarrow\;\;AB\;=\;\bf{\blue{13\;\:cm}}}

\\\;\underline{\boxed{\tt{Hence,\;\;length\;\;of\;\;AB\;=\;\bf{\blue{13\;\:cm}}}}}

_____________________________________________

For Area of the Triangle ::

Firstly we need to find the Semi Perimeter of Triangle that is s ::

\\\;\sf{\pink{:\rightarrow\;\;Semi\:-\:Perimeter\;of\;\Delta,\;s\;=\;\bf{\dfrac{Sum\;of\;all\;sides}{2}}}}

By applying values, we get

\\\;\sf{:\rightarrow\;\;s\;=\;\bf{\dfrac{AB\;+\;BC\;+\;AC}{2}}}

\\\;\sf{:\rightarrow\;\;s\;=\;\bf{\dfrac{Perimeter}{2}}}

\\\;\sf{:\rightarrow\;\;s\;=\;\bf{\dfrac{32}{2}}}

\\\;\sf{:\rightarrow\;\;s\;=\;\bf{\orange{16\;\:cm}}}

Now using the Heron's Formula we get,

\\\;\sf{\pink{:\rightarrow\;\;Area\;of\;\Delta\;=\;\bf{\sqrt{s(s\;-\;a)(s\;-\;b)(s\;-\;c)}}}}

  • Here a = AB = 13 cm

  • Here b = BC = 8 cm

  • Here c = AC = 11 cm

By applying values, we get,

\\\;\sf{:\rightarrow\;\;Area\;of\;\Delta\;=\;\bf{\sqrt{s(s\;-\;a)(s\;-\;b)(s\;-\;c)}}}

\\\;\sf{:\rightarrow\;\;Area\;of\;\Delta\;=\;\bf{\sqrt{(16)(16\;-\;13)(16\;-\;8)(16\;-\;11)}}}

\\\;\sf{:\rightarrow\;\;Area\;of\;\Delta\;=\;\bf{\sqrt{1920}}}

\\\;\sf{:\rightarrow\;\;Area\;of\;\Delta\;=\;\bf{\purple{43.82\;\:cm^{2}}}}

\\\;\underline{\boxed{\tt{Area\;\;of\;\;Triangle\;=\;\bf{\purple{43.82\;\:cm^{2}}}}}}

_____________________________________________

More to know :-

\\\;\sf{\leadsto\;\;Area\;of\;Square\;=\;(Side)^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Rectangle\;=\;Length\:\times\:Breadth}

\\\;\sf{\leadsto\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\:\times\:Base\:\times\:Height}

\\\;\sf{\leadsto\;\;Area\;of\;Parallelogram\;=\;Base\:\times\:Height}

\\\;\sf{\leadsto\;\;Area\;of\;Trapezium\;=\;\dfrac{1}{2}\:\times\:(Sum\:of\;||^{e}\:sides)\:\times\:Height}

Similar questions