Math, asked by Abhijithajare, 20 hours ago

Question:-

Find the slope of the tangent to the curved
\\ \sf \: y = \pi e^{\sin(x+y)} -\dfrac{\pi}{4} at \: the \: point \: \bigg(\frac{π}{4},\frac{ 3π}{4} \bigg). \\

No Spam ​​

Answers

Answered by AvinashNanganure
2

Step-by-step explanation:

plz check attachment for answer

Attachments:
Answered by mathdude500
9

\large\underline{\sf{Solution-}}

Given curve is

\rm \: y = \pi e^{\sin(x+y)} -\dfrac{\pi}{4}

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}y =\dfrac{d}{dx}\bigg[ \pi e^{\sin(x+y)} -\dfrac{\pi}{4}\bigg]

We know,

\boxed{\tt{ \dfrac{d}{dx} {e}^{x} =  {e}^{x} \: }} \\

and

\boxed{\tt{ \dfrac{d}{dx} k =  0 \: }} \\

So, using these results, we get

\rm \: \dfrac{dy}{dx}  = \pi e^{\sin(x+y)}\dfrac{d}{dx}sin(x + y)

We know,

So, using this, we get

\rm \: \dfrac{dy}{dx} = \pi e^{\sin(x+y)} \: cos(x + y) \: \dfrac{d}{dx}(x + y)

\rm \: \dfrac{dy}{dx} = \pi e^{\sin(x+y)} \: cos(x + y) \: \bigg(1 + \dfrac{dy}{dx}\bigg)

can be rewritten as

\rm \: \dfrac{dy}{dx}= \pi e^{\sin(x+y)} \: cos(x + y) \: + \pi e^{\sin(x+y)} \: cos(x + y) \dfrac{dy}{dx}

\rm \: \dfrac{dy}{dx} - \pi e^{\sin(x+y)} \: cos(x + y) \dfrac{dy}{dx} =  \pi e^{\sin(x+y)} \: cos(x + y)

\rm \: \dfrac{dy}{dx}\bigg(1 - \pi e^{\sin(x+y)} \: cos(x + y)\bigg) =  \pi e^{\sin(x+y)} \: cos(x + y) \\

\rm \: \dfrac{dy}{dx} = \dfrac{ \pi e^{\sin(x+y)} \: cos(x + y)}{1 - \pi e^{\sin(x+y)} \: cos(x + y)}

So,

\rm \: \dfrac{dy}{dx}_{\bigg(\dfrac{π}{4},\dfrac{ 3π}{4} \bigg)} = \dfrac{ \pi e^{\sin( \frac{\pi}{4} + \frac{3\pi}{4} )} \: cos( \frac{\pi}{4}  +  \frac{3\pi}{4} )}{1 - \pi e^{\sin( \frac{\pi}{4} + \frac{3\pi}{4} )} \: cos( \frac{\pi}{4}  +  \frac{3\pi}{4} )}

\rm \: \dfrac{dy}{dx}_{\bigg(\dfrac{π}{4},\dfrac{ 3π}{4} \bigg)} = \dfrac{ \pi e^{\sin\pi} \: cos( \pi)}{1 - \pi e^{\sin(\pi)} \: cos(\pi)}

We know,

So, using this, we get

\rm \: \dfrac{dy}{dx}_{\bigg(\dfrac{π}{4},\dfrac{ 3π}{4} \bigg)} = \dfrac{ \pi e^{0} \: ( - 1)}{1 - \pi e^{0} \: ( - 1)}

\rm \: \dfrac{dy}{dx}_{\bigg(\dfrac{π}{4},\dfrac{ 3π}{4} \bigg)} = \dfrac{  - \pi}{1 + \pi }

Hence,

\rm \: Slope\:of\:tangent \:  =  \: \dfrac{dy}{dx}_{\bigg(\dfrac{π}{4},\dfrac{ 3π}{4} \bigg)} = \dfrac{  - \pi}{1 + \pi }

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Let y = f(x) be any curve, then line which touches the curve y = f(x) exactly at one point say P is called tangent and that very point P, if we draw a perpendicular on tangent, that line is called normal to the curve at P.

2. If tangent is parallel to x - axis, its slope is 0.

3. If tangent is parallel to y - axis, its slope is not defined.

4. Two lines having slope M and m are parallel, iff M = m

5. If two lines having slope M and m are perpendicular, iff Mm = - 1.

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions