Physics, asked by sanju2363, 1 month ago

Question: Find the time taken by the block to reach the bottom of inclined plane. E = 200 i
N/C, M = 1 kg, q = 5 mC, g = 10 m/s2
, µ = 0.2


Options:

(a) 1.35 s

(b) 1.65 s

(c) 1.9 s

(d) 2.3 s

#Refer the attachment!!​

Attachments:

Answers

Answered by MagicalLove
127

Explanation:

{ \underline{ \underline{ \red{ \bf{Question:}}}}}

  • Find the time taken by the block to reach the bottom of inclined plane. E = 200 i N/C, M = 1 kg, q = 5 mC, g = 10 m/s2, µ = 0.2

  • Options:
  • (a) 1.35 s
  • (b) 1.65 s
  • (c) 1.9 s
  • (d) 2.3 s

 \\  \\

{ \underline{ \underline{ \bf{ \red{Answer:}}}}}

 \bf { \underline{\pink{option(a) \: 1.35 \: s}}}

 \\  \\

{ \underline{ \underline{ \bf{ \red{Given :}}}}}

  • E = 200 i N/C,
  • M = 1 kg,
  • q = 5 mC,
  • g = 10 m/s2
  • µ = 0.2

 \\  \\

{ \underline{ \underline{ \bf{ \red{To \:  \:  Find :}}}}}

  • The time taken by the block to reach the bottom of inclined plane.

 \\  \\

{ \underline{ \underline{ \bf{ \red{Explanation :}}}}}

Net Force among the incline .

 \huge{ \underline{ \boxed{ \rm{ \blue{F = mg \: sin \theta - ( \mu \: N \:  + qE \: cos \theta)}}}}} \bigstar

 \qquad \looparrowright \rm \: F = mg \: sin \theta \:  -  \mu(mg \: cos \theta + qE \: sin \theta) - qE \: cos \theta

\qquad \looparrowright \rm \: F =1 \times 10 \: sin \: 30 - 0.2(1 \times 10 \times cos \: 30 + 200 \times 5 \times  {10}^{ - 3}  \times sin30) - 200 \times 5 \times  {10}^{ - 3}  \: cos  \: 30

\qquad \looparrowright \rm \: F =5 - 0.2(5 \sqrt{3}  + 0.5) -  \frac{ \sqrt{3} }{2}  \\

\qquad \looparrowright \rm \: F =2.3 \: N

 \longmapsto \bf \: a = F/m

 \longmapsto \bf \: a = \frac{2.3}{1}  \\

 \longmapsto \bf \: a =2.3 \:  \frac{m}{ {s}^{2} }  \\

Time taken to slide down 2m long

{ \boxed{ \tt{ \green{Incline \: t \:  =  \sqrt{ \frac{25}{a} }  =  \sqrt{ \frac{2 \times 2}{2.3} }  = 1.32 \: s \: }}}}

________________

Hope it will help you S...

________________________

Attachments:
Answered by BrainlyTornado
89

ANSWER:

  • Time taken by the block to reach the bottom of inclined plane = 1.35 s

\\ \\

GIVEN:

  • E = 200 N/C.

  • M = 1 kg.

  • q = 5 mC.

  • g = 10 m/s².

  • µ = 0.2.

\\ \\

TO FIND:

  • Time taken by the block to reach the bottom of inclined plane.

\\ \\

EXPLANATION:

 \sf From \ the \ diagram, \\ \sf ma = mg sin 30^{\circ} -\mu R - qE cos30^{\circ} \\  \\  \\  \sf a =   \dfrac{10}{2}  - 0.2 \left(mgcos  30^{\circ}  + qE sin30^{\circ}\right) - q  E cos30^{\circ} \\  \\  \\ \sf a = 5  - 0.2 \left(10 \times \dfrac{ \sqrt{3} }{2}+ \dfrac{5 \times  {10}^{ - 3}  \times 200}{2}\right) - \dfrac{5 \times  {10}^{ - 3}  \times 200 \times  \sqrt{3} }{2} \\  \\  \\ \sf a = 5  - 0.2 (5 \sqrt{3} + 0.5) + \dfrac{1.732} {2} \\  \\  \\ \sf a = 5- \sqrt{3}  - 0.1 - 0.866 \\  \\  \\ \sf a = 2.302 \ m {s}^{ - 2}  \\  \\  \\  \sf From \ Pythagoras \ theorem, \\ \sf  Length \ of \ inclined \ path =  \dfrac{1}{sin {30}^{ \circ} }  = 2 \ m. \\  \\  \\\blue{\boxed{ \bold{ \green{ \large{s =  \dfrac{1}{2} a {t}^{2}}}}}}  \\  \\  \\  \sf 2 = \dfrac{1}{2}  \times 2.302 \times  {t}^{2} \\  \\  \\ \sf {t}^{2} = \dfrac{4}{2.302}  \\  \\  \\  \sf t = 1.32 \ s \approx 1. 35 \ s \\  \\  \\

Hence the time taken by the block to reach the bottom of inclined plane = 1.35 s.

Attachments:
Similar questions