Physics, asked by Anonymous, 1 month ago

Question:-

★ Find the value of tan 9° - tan27° - tan36° + tan81°

Answers

Answered by Anonymous
50

Question:

  • Find the value of tan 9° - tan27° - tan36° + tan81°

Answer:

  • The value of the given expression is 4

Explanation:

Given Expression:

  • tan 9° - tan 27°  - tan 36 ° + tan 81

To Find:

  • The value of the expression

Formula Used

\bigstar \; {\underline{\boxed{\bf{ Sin 2A = 2\; Sin A\; Cos A }}}}

Required Solution:

  • Simplifying the expression

\\ \star \; {\underline{\bf{ We \; can \; write \; the\; expresion \;as :}}} \\

{:\implies} \sf tan(9) + - tan(27 ) - tan(36) + tan (81)

{:\implies} \sf tan(9 ) - tan(27 ) - cot (27) + cot (9)

\\ \star \; {\underline{\bf{ Writing \; tan ,cot \; terms \; into \; sin \; and \; cos :}}} \\

{:\implies} \sf tan(9 ) + cot (9)- tan(27 ) - cot (27)

{:\implies} \sf  \dfrac{sin(9)}{cos(9)} -    \dfrac{sin(9)}{cos(9)}  -   \dfrac{cos(27)}{sin(27)}+ \dfrac{cos(27)}{sin(27)}  

\\ \star \; {\underline{\bf{ Simplifying \; the \; expression \;further :}}} \\

{:\implies} \bf  \bigg(\dfrac{sin^2(9)+ cos^2 (9)}{cos(9)  \times sin( 9)} \bigg)- \bigg( \dfrac{cos^2(27) + sin^2 ( 27 )}{sin(27)\times cos(27)} \bigg)

{:\implies} \bf  \dfrac{1}{cos(9)  \times sin( 9)} -  \dfrac{1}{sin(27)\times cos(27)}

\\ \star \; {\underline{\bf{ Multiplying \; numerator , denominator \; with \;2 :}}} \\

{:\implies} \sf  \dfrac{1}{cos(9)  \times sin( 9)} -  \dfrac{1}{sin(27)\times cos(27)}

{:\implies} \sf  \dfrac{2 \times1}{ 2 \times cos(9)  \times sin( 9)} -  \dfrac{ 2 \times 1}{2 \times sin(27)\times cos(27)}  

\\ \star \; {\underline{\bf{ Using \; above \; mentioned \; formula :}}} \\

{:\implies} \sf  \dfrac{2}{ 2 \times cos(9)  \times sin( 9)} -  \dfrac{ 2 }{2 \times sin(27)\times cos(27)}

{:\implies} \sf  \dfrac{2}{ sin(2 \times 9)} -  \dfrac{ 2 }{sin ( 2 \times 7)}

{:\implies} \sf  \dfrac{2}{ sin( 18)} -  \dfrac{ 2 }{sin( 54)}

\\ \star \; {\underline{\bf{ Evaluating \; the \; expression \;Further:}}} \\

{:\implies} \sf 2 \bigg( \dfrac{1}{ sin( 18)} -  \dfrac{ 1 }{sin( 54)} \bigg)

{:\implies} \sf 2 \bigg( \dfrac{4}{ \sqrt{5} - 1} -  \dfrac{ 4 }{\sqrt{5} + 1} \bigg)

{:\implies} \sf 8 \bigg( \dfrac{1}{ \sqrt{5} - 1} -  \dfrac{ 1 }{\sqrt{5} + 1} \bigg)

\\ \star \; {\underline{\bf{ Simplifying \; the \; expression \;further :}}} \\

{:\implies} \sf 8 \bigg( \dfrac{\sqrt{5} + 1 - \sqrt{5} + 1}{( \sqrt{5} - 1)  \sqrt{5} +  1 )  }  \bigg)

{:\implies} \sf 8 \bigg( \dfrac{1 + 1}{( \sqrt{5}) ^2 - (1 ) ^2}\bigg)

{:\implies} \sf 8 \bigg( \dfrac{2}{4}\bigg)

{:\implies} {\pink{\underline{\boxed{\tt{4}}}\bigstar}}

Answered by cookie404
1

Answer:

Photosynthesis is the process by which plants use sunlight, water, and carbon dioxide to create oxygen and energy in the form of sugar

Similar questions