Math, asked by SuitableBoy, 3 months ago

Question :


Find the value of ➡

 \sf \:  {cot}^{2} \:   \dfrac{\pi}{7}  +  {cot}^{2}  \:  \dfrac{2\pi}{7}  +  {cot}^{2}  \:  \dfrac{3\pi}{7}

Answers

Answered by Anonymous
24

Answer:

5.47

Step-by-step explanation:

\implies \sf \: {cot}^{2} \: \dfrac{\pi}{7} + {cot}^{2} \: \dfrac{2\pi}{7} + {cot}^{2} \: \dfrac{3\pi}{7}

 \\

For easy calculation, put the values in the brackets for solving.

 \\

\implies \sf \: cot^2 \bigg(\dfrac{\pi}{7} \bigg) + cot^2 \bigg(\dfrac{2 \pi}{7} \bigg) + cot^2 \bigg( \dfrac{3 \pi}{7} \bigg)

 \\

Converting the π value in the degree.

We get,

\implies \sf \pi = 180^{\circ}

 \\

\implies \sf cot^2 (25.714) + cot^2 (51.429) + cot^2 (77.142)

 \\

\implies \sf (2.1742)^2 + (0.8273)^2 + (0.2475)^2

 \\

\implies \sf 4.731 + 0.68 + 0.06

 \\

\implies \bf 5.47

 \\

\therefore \bf The \: value \: of \: {cot}^{2} \: \dfrac{\pi}{7} + {cot}^{2} \: \dfrac{2\pi}{7} + \\ \sf {cot}^{2} \: \dfrac{3\pi}{7} \: is \: 5.47.

Answered by Anonymous
14

\implies \sf \: {cot}^{2} \: \dfrac{\pi}{7} + {cot}^{2} \: \dfrac{2\pi}{7} + {cot}^{2} \: \dfrac{3\pi}{7}

For easy calculation, put the values in the brackets for solving.

\implies \sf \: cot^2 \bigg(\dfrac{\pi}{7} \bigg) + cot^2 \bigg(\dfrac{2 \pi}{7} \bigg) + cot^2 \bigg( \dfrac{3 \pi}{7} \bigg)

Converting the π value in the degree.

We get,

\implies \sf \pi = 180^{\circ}

\implies \sf cot^2 (25.714) + cot^2 (51.429) + cot^2 (77.142)

\implies \sf (2.1742)^2 + (0.8273)^2 + (0.2475)^2

\begin{gathered} \\ \end{gathered}

\implies \sf 4.731 + 0.68 + 0.06

\implies \bf 5.47

\begin{gathered}\therefore \bf The \: value \: of \: {cot}^{2} \: \dfrac{\pi}{7} + {cot}^{2} \: \dfrac{2\pi}{7} + \\ \sf {cot}^{2} \: \dfrac{3\pi}{7} \: is \: 5.47.\end{gathered}

☘Hope it helps❢❢

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Glad to help u

❀Thankew❀

Similar questions