Math, asked by krishkadyan, 11 months ago

Question Find volume of a sphere of surface area 154 cm2​

Answers

Answered by shaikkashif83
1

Answer:

Step-by-step explanation:

1 Answer

r2 = 154 x 7/4 x 22 = 72/22 ⇒ r = 7/2.

= 4/3 x 22/7 x 7/2 x 7/2 x 7/2 cm3

= 539/3 cm3 = 179.2/3 cm3

Answered by varunvbhat26
1

Answer: 539/3 cm³

Step-by-step explanation:

Surface Area of a Sphere = 4\pi r^{2} = 154 cm²

4\pi r^{2} = 154 cm²

4 \times \dfrac{22}{7} \times r^{2} = 154

r^{2} = \dfrac{154 \times 7}{22 \times 4}

r^{2} = \dfrac{49}{4}

r^{2} = \dfrac{7^{2}}{2^{2}}

r = \dfrac{7}{2}

Therefore, the radius of the sphere = 7/2 cm.

Volume of a sphere = \dfrac{4}{3} \pi r^{3}

\dfrac{4}{3} \pi r^{3}

= \dfrac{4}{3} \times \dfrac{22}{7} \times \dfrac{7^{3}}{2^{3}}

= \dfrac{4}{3} \times \dfrac{22}{7} \times \dfrac{7 \times 7 \times 7}{2 \times 2 \times 2}

= \dfrac{11 \times 7 \times 7}{3}

= \dfrac{539}{3}

Therefore, volume of the sphere = 539/3 cm³.

Similar questions