Math, asked by swanhayden7, 1 month ago

Question For

Brainly mod, Maths Aryabhatta, Brainly stars and best user.

Let f(x) = x^2 + xg'(1) + g''(2) and g(x) = f(1)x^2 + xf'(x) + f''(x), find f(x) and g(x).

Please don't scam.

Quality answer needed.

Maths Class 12 Differential Calculus.​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:f(x) =  {x}^{2} + xg'(1) + g''(2) -  -  - (1)

So,

\bf :\longmapsto\:f(1) =  1 + g'(1) + g''(2) -  -  -  - (2)

Also,

\bf :\longmapsto\:f'(x) = 2x + g'(1) -  -  -  - (3)

Also,

\bf :\longmapsto\:f''(x) = 2  -  -  -  - (4)

Now, Further given that

 \red{\rm :\longmapsto\:g(x) = f(1) {x}^{2} + xf'(x) + f''(x)}

On substituting the values evaluated above in equation (2), (3) and (4), we get

 \red{\rm :\longmapsto\:g(x) =  \bigg(1 + g'(1) + g''(2) \bigg) {x}^{2}  + x(2x + g'(1)) + 2}

 \red{\rm :\longmapsto\:g(x) = {x}^{2}  + g'(1) {x}^{2}  + g''(2){x}^{2}  + 2 {x}^{2}  + g'(1)x + 2}

 \red{\rm :\longmapsto\:g(x) = {x}^{2}(3 + g'(1) + g''(2)) + xg'(1) + 2}

So,

 \red{\rm :\longmapsto\:g'(x) =2x(3 + g'(1) + g''(2)) + g'(1)}

Thus,

 \red{\rm :\longmapsto\:g'(1) =2(3 + g'(1) + g''(2)) + g'(1)}

 \red{\rm :\longmapsto\:0=2(3 + g'(1) + g''(2))}

 \red{\rm :\longmapsto \: 3 + g'(1) + g''(2) = 0 -  -  -  - (5)}

Also,

 \red{\rm :\longmapsto\:g''(x) =2(3 + g'(1) + g''(2))}

Thus,

 \red{\rm :\longmapsto\:g''(2) =2(3 + g'(1) + g''(2))}

 \red{\rm :\longmapsto\:g''(2) =6 + 2g'(1) + 2g''(2)}

 \red{\rm :\longmapsto\:g''(2) =6 + 2g'(1) + 2g''(2)}

 \red{\rm :\longmapsto\:6 + 2g'(1) + g''(2) = 0 -  -  -  - (6)}

On Subtracting equation (5) from equation (6), we get

 \red{\rm :\longmapsto\:g'(1) + 3 = 0}

\bf\implies \:g'(1) =  - \:  3

On substituting this value in equation (5), we get

 \red{\rm :\longmapsto \: 3  - 3 + g''(2) = 0}

\bf\implies \:g'(2) =\:  0

Thus,

\bf :\longmapsto\:f'(x) = 2x + g'(1) = 2x - 3

So, on substituting the values of g'(1) and g''(2), in equation (1), we get

 \red{\rm :\longmapsto\: \red{\boxed{ \bf{ \: f(x) =  {x}^{2}  - 3x}}}}

and

 \red{\rm :\longmapsto\: \red{\boxed{ \bf{ \: g(x) =  - 3x + 2}}}}

Similar questions