Math, asked by Anonymous, 8 months ago

Question for Brainly Teacher

Attachments:

Answers

Answered by hukam0685
7

Step-by-step explanation:

Given:

A=\left|\begin{array}{ccc}sinA&cosA&sinA+cosB\\sinB&cosA&sinB+cosB\\sinC&cosA&sinC+cosB\end{array}\right|

To find:

Prove determinants is zero

Solution:

Expand the determinant from properties of determinants

A=\left|\begin{array}{ccc}sinA&cosA&sinA\\sinB&cosA&sinB\\sinC&cosA&sinC\end{array}\right|+\left|\begin{array}{ccc}sinA&cosA&cosB\\sinB&cosA&cosB\\sinC&cosA&cosB\end{array}\right|

Let A_1=\left|\begin{array}{ccc}sinA&cosA&sinA\\sinB&cosA&sinB\\sinC&cosA&sinC\end{array}\right|

A_2=\left|\begin{array}{ccc}sinA&cosA&cosB\\sinB&cosA&cosB\\sinC&cosA&cosB\end{array}\right|

A determinants is zero if two rows or two columns are identical.

in A1 determinant C1= C3

Thus,

A1=0

From A2

A_2=\left|\begin{array}{ccc}sinA&cosA&cosB\\sinB&cosA&cosB\\sinC&cosA&cosB\end{array}\right|

Take cos A common from C2 and cos B from C3

A_2=cosA\:cosB\left|\begin{array}{ccc}sinA&1&1\\sinB&1&1\\sinC&1&1\end{array}\right|

Again C2 and C3 are Identical ,thus

A2=0

So,

A=A_1+A_2\\\\A=0+0\\\\A=0\\\\

|A|=0

Hence proved.

Hope it helps you.

Similar questions