Math, asked by amritanshu6563, 1 year ago

Question for Brainly Teachers​

Attachments:

Answers

Answered by hukam0685
10

Step-by-step explanation:

Q2(i)

\left|\begin{array}{ccc}</p><p>43&amp;1&amp;3\\35&amp;7&amp;2\\17&amp;3&amp;1\end{array}\right|=0

C2->C2-14C3

\left|\begin{array}{ccc}</p><p>43-42&amp;1&amp;3\\35-28&amp;7&amp;2\\17-14&amp;3&amp;1\end{array}\right|=0

\left|\begin{array}{ccc}</p><p>1&amp;1&amp;3\\7&amp;7&amp;2\\3&amp;3&amp;1\end{array}\right|=0

Here C1 =C3

according to property of Determinant ;if two rows and two columns are identical than Determinant will be zero

so

\left|\begin{array}{ccc}</p><p>1&amp;1&amp;3\\7&amp;7&amp;2\\3&amp;3&amp;1\end{array}\right|=0

Q2(ii)\left|\begin{array}{ccc}</p><p>1&amp;a&amp;a^2-bc\\1&amp;b&amp;b^2-ca\\1&amp;c&amp;c^2-ab\end{array}\right|=0

R1->R1-R3

R2->R2-R3

\left|\begin{array}{ccc}</p><p>0&amp;a-c&amp;a^2-bc-c^2+ab\\0&amp;b-c&amp;b^2-ca-c^2+ab\\0&amp;c&amp;c^2-ab\end{array}\right|=0

\left|\begin{array}{ccc}</p><p>0&amp;a-c&amp;a^2-c^2+ab-bc\\0&amp;b-c&amp;b^2-c^2+ab-ac\\0&amp;c&amp;c^2-ab\end{array}\right|=0

\left|\begin{array}{ccc}</p><p>0&amp;a-c&amp;(a-c)(a+c)+b(a-c)\\0&amp;b-c&amp;(b-c)(b+c)+a(b-c)\\0&amp;c&amp;c^2-ab\end{array}\right|=0

take(a-c) common from R1

and (b-c) from R2

(a-c)(b-c)\left|\begin{array}{ccc}</p><p>0&amp;1&amp;a+ b+c\\0&amp;1&amp;a+b+c\\0&amp;c&amp;c^2-ab\end{array}\right|=0

we know that if two rows are identical,determinant will be zero

so

(a-c)(b-c)(0)

=0

Answered by shardakuknaa
0

Step-by-step explanation:

Step-by-step explanation:

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=2

</p><p>a

l

p

b

m

q

c

n

r

We know that from the property of Determinant,we can split the determinant

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > b&c&a\\m&n&l\\q&r&p\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=

</p><p>a

l

p

b

m

q

c

n

r

+

</p><p>b

m

q

c

n

r

a

l

p

Property : if we interchange two rows or two columns once sign of Determinant will change

So

In second Determinant

C1 <-> C3

\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|-\left|\begin{array}{ccc} < /p > < p > a&c&b\\l&n&m\\p&r&q\end{array}\right|\end{gathered}

=

</p><p>a

l

p

b

m

q

c

n

r

</p><p>a

l

p

c

n

r

b

m

q

C2<-> C3

\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

=

</p><p>a

l

p

b

m

q

c

n

r

+

</p><p>a

l

p

b

m

q

c

n

r

\begin{gathered}=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

=2

</p><p>a

l

p

b

m

q

c

n

r

So,it is proved

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=2

</p><p>a

l

p

b

m

q

c

n

r

Hope it helps you.

Similar questions