Math, asked by amritanshu6563, 10 months ago

Question for Brainly Teachers​

Attachments:

Answers

Answered by hukam0685
13

Step-by-step explanation:

\left|\begin{array}{ccc}</p><p>a+b&amp;b+c&amp;c+a\\l+m&amp;m+n&amp;n+l\\p+q&amp;q+r&amp;r+p\end{array}\right|=2\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|

We know that from the property of Determinant,we can split the determinant

\left|\begin{array}{ccc}</p><p>a+b&amp;b+c&amp;c+a\\l+m&amp;m+n&amp;n+l\\p+q&amp;q+r&amp;r+p\end{array}\right|=\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|+\left|\begin{array}{ccc}</p><p>b&amp;c&amp;a\\m&amp;n&amp;l\\q&amp;r&amp;p\end{array}\right|

Property : if we interchange two rows or two columns once sign of Determinant will change

So

In second Determinant

C1 <-> C3

=\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|-\left|\begin{array}{ccc}</p><p>a&amp;c&amp;b\\l&amp;n&amp;m\\p&amp;r&amp;q\end{array}\right|

C2<-> C3

=\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|+\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|

=2\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|

So,it is proved

\left|\begin{array}{ccc}</p><p>a+b&amp;b+c&amp;c+a\\l+m&amp;m+n&amp;n+l\\p+q&amp;q+r&amp;r+p\end{array}\right|=2\left|\begin{array}{ccc}</p><p>a&amp;b&amp;c\\l&amp;m&amp;n\\p&amp;q&amp;r\end{array}\right|

Hope it helps you.

Answered by shardakuknaa
0

Answer:

Step-by-step explanation:

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=2

</p><p>a

l

p

b

m

q

c

n

r

We know that from the property of Determinant,we can split the determinant

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > b&c&a\\m&n&l\\q&r&p\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=

</p><p>a

l

p

b

m

q

c

n

r

+

</p><p>b

m

q

c

n

r

a

l

p

Property : if we interchange two rows or two columns once sign of Determinant will change

So

In second Determinant

C1 <-> C3

\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|-\left|\begin{array}{ccc} < /p > < p > a&c&b\\l&n&m\\p&r&q\end{array}\right|\end{gathered}

=

</p><p>a

l

p

b

m

q

c

n

r

</p><p>a

l

p

c

n

r

b

m

q

C2<-> C3

\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

=

</p><p>a

l

p

b

m

q

c

n

r

+

</p><p>a

l

p

b

m

q

c

n

r

\begin{gathered}=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

=2

</p><p>a

l

p

b

m

q

c

n

r

So,it is proved

\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}

</p><p>a+b

l+m

p+q

b+c

m+n

q+r

c+a

n+l

r+p

=2

</p><p>a

l

p

b

m

q

c

n

r

Hope it helps you.

Similar questions