Question for Brainly Teachers
Answers
Step-by-step explanation:
We know that from the property of Determinant,we can split the determinant
Property : if we interchange two rows or two columns once sign of Determinant will change
So
In second Determinant
C1 <-> C3
C2<-> C3
So,it is proved
Hope it helps you.
Answer:
Step-by-step explanation:
\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
</p><p>a+b
l+m
p+q
b+c
m+n
q+r
c+a
n+l
r+p
∣
∣
∣
∣
∣
∣
∣
=2
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
We know that from the property of Determinant,we can split the determinant
\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > b&c&a\\m&n&l\\q&r&p\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
</p><p>a+b
l+m
p+q
b+c
m+n
q+r
c+a
n+l
r+p
∣
∣
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣
∣
</p><p>b
m
q
c
n
r
a
l
p
∣
∣
∣
∣
∣
∣
∣
Property : if we interchange two rows or two columns once sign of Determinant will change
So
In second Determinant
C1 <-> C3
\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|-\left|\begin{array}{ccc} < /p > < p > a&c&b\\l&n&m\\p&r&q\end{array}\right|\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
−
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
c
n
r
b
m
q
∣
∣
∣
∣
∣
∣
∣
C2<-> C3
\begin{gathered}=\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|+\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}
=
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
\begin{gathered}=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}
=2
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
So,it is proved
\begin{gathered}\left|\begin{array}{ccc} < /p > < p > a+b&b+c&c+a\\l+m&m+n&n+l\\p+q&q+r&r+p\end{array}\right|=2\left|\begin{array}{ccc} < /p > < p > a&b&c\\l&m&n\\p&q&r\end{array}\right|\end{gathered}
∣
∣
∣
∣
∣
∣
∣
</p><p>a+b
l+m
p+q
b+c
m+n
q+r
c+a
n+l
r+p
∣
∣
∣
∣
∣
∣
∣
=2
∣
∣
∣
∣
∣
∣
∣
</p><p>a
l
p
b
m
q
c
n
r
∣
∣
∣
∣
∣
∣
∣
Hope it helps you.