Math, asked by amritanshu6563, 1 year ago

Question for Brainly Teachers​

Attachments:

Answers

Answered by RvChaudharY50
4

Answer:

see solution in attachment bro ,

very nice question but lengthy ...

mark as brainlist if you understand ...

Attachments:
Answered by hukam0685
23

Step-by-step explanation:

\left|\begin{array}{ccc}</p><p>a-b-c&amp;2b&amp;2c\\2a&amp;b-c-a&amp;2c\\2a&amp;2b&amp;c-a-b\end{array}\right|=(a+b+c)^3

C1->C1+C2+C3

\left|\begin{array}{ccc}</p><p>a-b-c+2b+2c&amp;2b&amp;2c\\2a+b-c-a+2c&amp;b-c-a&amp;2c\\2a+2b-c-a-b&amp;2b&amp;c-a-b\end{array}\right|

\left|\begin{array}{ccc}</p><p>a+b+c&amp;2b&amp;2c\\a+b+c&amp;b-c-a&amp;2c\\a+b+c&amp;2b&amp;c-a-b\end{array}\right|

take (a+b+c) common from C1

(a+b+c)\left|\begin{array}{ccc}</p><p>1&amp;2b&amp;2c\\1&amp;b-c-a&amp;2c\\1&amp;2b&amp;c-a-b\end{array}\right|

R1->R1-R3

R2->R2-R3

(a+b+c)\left|\begin{array}{ccc}</p><p>1-1&amp;2b-b+c+a&amp;2c-2c\\1-1&amp;b-c-a-2b&amp;2c-c+a+b\\1&amp;2b&amp;c-a-b\end{array}\right|

(a+b+c)\left|\begin{array}{ccc}</p><p>0&amp;a+b+c&amp;0\\0&amp;-(a+b+c)&amp;a+b+c\\1&amp;2b&amp;c-a-b\end{array}\right|

take common (a+b+c) from R1 and R2

(a+b+c)^3\left|\begin{array}{ccc}</p><p>0&amp;1&amp;0\\0&amp;-1&amp;1\\1&amp;2b&amp;c-a-b\end{array}\right|

Expand the determinant along C1

=(a+b+c)^3 [1(1-0)]]\\=(a+b+c)^3\\

So,

\left|\begin{array}{ccc}</p><p>a-b-c&amp;2b&amp;2c\\2a&amp;b-c-a&amp;2c\\2a&amp;2b&amp;c-a-b\end{array}\right|=(a+b+c)^3

Hence Proved.

Hope it helps you.

Similar questions