Question for Brainly Teachers
Answers
Step-by-step explanation:
Apply
R1 -> R1-R3
R2 -> R2-R3
Expand the determinant along C1
= (cos A-cos C)(sin B-sin C)-(sin A-sin C)(cos B-cos C)
=cos A sin B-cos A sin C-cos C sin B+ cos C sin C-cos B sin A+cos C sin A+cos B sin C- cos C sin C
=cos A sin B-cos A sin C-cos C sin B-cos B sin A+cos C sin A+cos B sin C
=cos A sin B-cos B sin A+cos C sin A-cos A sin C+cos B sin C-cos C sin B
=sin(B-A)+sin(A-C)+sin(C-B)
if It is given that ABC is a triangle,than further it can be solved,just like you had solved in your previous class.
Step-by-step explanation:
$$\begin{lgathered}\left|\begin{array}{ccc} 1&cos A&sin A\\ 1&cos B&sin B\\ 1&cos C&sin C\end{array} \right|=4sin\bigg(\frac{B-C}{2}\bigg)sin\bigg(\frac{C-A}{2}\bigg)sin\bigg(\frac{A-B}{2}\bigg)\end{lgathered}$$
Apply
R1 -> R1-R3
R2 -> R2-R3
$$\begin{lgathered}\left|\begin{array}{ccc} 1-1&cos A-cos C&sin A- sin C\\ 1-1&cos B-cos C&sin B-sin C\\ 1&cos C&sin C\end{array}\right|\end{lgathered}$$
$$\begin{lgathered}\left|\begin{array}{ccc} 0&cos A-cos C&sin A- sin C\\ 0&cos B-cos C&sin B-sin C\\ 1&cos C&sin C\end{array}\right|\end{lgathered}$$
Expand the determinant along C1
= (cos A-cos C)(sin B-sin C)-(sin A-sin C)(cos B-cos C)
=cos A sin B-cos A sin C-cos C sin B+ cos C sin C-cos B sin A+cos C sin A+cos B sin C- cos C sin C
=cos A sin B-cos A sin C-cos C sin B-cos B sin A+cos C sin A+cos B sin C
=cos A sin B-cos B sin A+cos C sin A-cos A sin C+cos B sin C-cos C sin B
=sin(B-A)+sin(A-C)+sin(C-B)
if It is given that ABC is a triangle,than further it can be solved,just like you had solved in your previous class.