Math, asked by amritanshu6563, 1 year ago

Question for Brainly Teachers​

Attachments:

Answers

Answered by hukam0685
6

Step-by-step explanation:

if a,b and C are all different

\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;a^4-1\\</p><p>b&amp;b^2&amp;b^4-1\\</p><p>c&amp;c^2&amp;c^4-1\end{array}\right|=0

then prove that

ab+bc+ca=\frac{a+b+c}{abc}\\

Separate the determinant

\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;a^4\\</p><p>b&amp;b^2&amp;b^4\\</p><p>c&amp;c^2&amp;c^4\end{array}\right|+\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;-1\\</p><p>b&amp;b^2&amp;-1\\</p><p>c&amp;c^2&amp;-1\end{array}\right|=0

Take a,b,c common from R1,R2 and R3 respectively from 1st determinant

abc\left|\begin{array}{ccc}</p><p>1&amp;a&amp;a^3\\</p><p>1&amp;b&amp;b^3\\</p><p>1&amp;c&amp;c^3\end{array}\right|-\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;1\\</p><p>b&amp;b^2&amp;1\\</p><p>c&amp;c^2&amp;1\end{array}\right|=0

Apply R2 -> R2-R1

and R3 -> R3-R1

in both

abc\left|\begin{array}{ccc}</p><p>1&amp;a&amp;a^3\\</p><p>1-1&amp;b-a&amp;b^3-a^3\\</p><p>1-1&amp;c-a&amp;c^3-a^3\end{array}\right|-\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;1\\</p><p>b-a&amp;b^2-a^2&amp;1-1\\</p><p>c-a&amp;c^2-a^2&amp;1-1\end{array}\right|=0

abc\left|\begin{array}{ccc}</p><p>1&amp;a&amp;a^3\\</p><p>0&amp;b-a&amp;(b-a)(b^2+ab+a^2)\\</p><p>0&amp;c-a&amp;(c-a)(c^2+ac+a^2)\end{array}\right|-\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;1\\</p><p>b-a&amp;(b-a)(b+a)&amp;0\\</p><p>c-a&amp;(c-a)(c+a)&amp;0\end{array}\right|=0

take common (b-a) and (c-a) from R2 and R3 in both Determinants

abc(b-a)(c-a)\left|\begin{array}{ccc}</p><p>1&amp;a&amp;a^3\\</p><p>0&amp;1&amp;(b^2+ab+a^2)\\</p><p>0&amp;1&amp;(c^2+ac+a^2)\end{array}\right|-(b-a)(c-a)\left|\begin{array}{ccc}</p><p>a&amp;a^2&amp;1\\</p><p>1&amp;(b+a)&amp;0\\</p><p>1&amp;(c+a)&amp;0\end{array}\right|=0

Expanding 1st determinant along C1 and second by C3

abc(b-a)(c-a)\left|\begin{array}{cc}</p><p>1&amp;(b^2+ab+a^2)\\</p><p>1&amp;(c^2+ac+a^2)\end{array}\right|-(b-a)(c-a)\left|\begin{array}{cc}</p><p>1&amp;(b+a)\\</p><p>1&amp;(c+a)\end{array}\right|=0

abc(b-a)(c-a)[c^2+ac+a^2-b^2-ab-a^2]-(b-a)(c-a)[c+a-b-a]=0\\\\abc(b-a)(c-a)[c^2+ac-b^2-ab]-(b-a)(c-a)[c-b]=0\\\\

abc(b-a)(c-a)(c-b)[c+b+a]-(b-a)(c-a)[c-b]=0\\\\(b-a)(c-a)(c-b)[abc(a+b+c)-1]=0\\\\

[abc(a+b+c)-1]=0\\\\abc(a+b+c)=1\\\\

Note*:From the given data the above mentioned can be proved.

If the data was

if a,b and C are all different

\left|\begin{array}{ccc}</p><p>a&amp;a^3&amp;a^4-1\\</p><p>b&amp;b^3&amp;b^4-1\\</p><p>c&amp;c^3&amp;c^4-1\end{array}\right|=0

then only we can prove that

ab+bc+ca=\frac{a+b+c}{abc}\\

For this do the same process,and you will reach the results.

Hope it helps you

Similar questions