Math, asked by Anonymous, 1 year ago

┏○)) ━━━━━━━━!

Question for maths expert......

Attachments:

Answers

Answered by Anonymous
9
tan(alpha+beta)= tan alpha + tan beta/1- tan alpha tan beta

= m/m+1 + 1/2m +1 / 1 - m/(m+1)(2m+1)

= 2m^2 + m + m+ 1 / (m+1)( 2m+1) -m

= 2m^2 + 2m + 1)/ 2m^2 + m + 2m +1 -m

= 2m^2 + 2m +1)/ 2m^2 + 2m +1

= 1

So alpha + beta = pie/4


✌✌✌Dr.Dhruv✌✌✌✌✌✌

✌✌✌✌Senior chairman of Resdnick✌✌✌✌

Anonymous: Thanq soo much :)
Anonymous: good answer:)
Answered by VemugantiRahul
12
Hi there !
Here's the answer :

•°•°•°•°•°<><><<><>><><>°•°•°•°•°•°

Taking alpha as a an Beta as b

Given,
tan\: a= \frac{m}{m+1}

tan\: b= \frac{1}{2m+1}


We have,
tan(a+b) = \frac{tan\: a+tan\: b}{1-tan\: a.tan\: b}

= \frac{\frac{m}{m+1}+\frac{1}{2m+1}}{1-(\frac{m}{m+1})(\frac{1}{2m+1})}

= \frac{m(2m+1)+(m+1)}{(m+1)(2m+1)-m}

= \frac{2m^{2}+2m+1}{2m^{2}+3m+1-m}


= \frac{2m^{2}+2m+1}{2m^{2}+2m+1}

= 1



 tan (a+b) = 1

=> (a+b) = tan^{-1}(1)

=> (a+b) = tan^{-1}(tan\: \frac{\pi}{4})


•°•
(a+b) = \frac{\pi}{4}

Anonymous: Thanq soo much :)
Anonymous: great answer great presentation :-)
Similar questions