Math, asked by munni679, 4 months ago

Question for mods
Three sides of a triangle measure 8 m ,15 m,17 m. Find its area and Perimeter

Answers

Answered by Anonymous
112

Given :

Three sides of a triangle measure 8 m ,15 m & 17 m.

To find :

  • Area and perimeter of trianlge

Solution :

Triangle measures = 8m, 15m & 17 m

According to the heron's formula

→ s = ½(a + b + c) where " s " is the semiperimeter

  • a = 8m
  • b = 15m
  • c = 17m

→ s = ½(8 + 15 + 17)

→ s = ½ × 40

→ s = 20 m

Area of trianlge=s(s - a)(s - b)(s - c)

→ √20(20 - 8)(20 - 15)(20 - 17)

→ √20 × 12 × 5 × 3

→ √20 × 60 × 3

→ √3600

→ 60 m²

•°• Area of a triangle = 60m²

________________________________

Perimeter of a trianlge = Sum of three sides of a triangle

→ 8 + 15 + 17

→ 40 m

•°• Perimeter of a triangle = 40 m

________________________________

Answered by Hɾιтհιĸ
1008

\huge\mathcal\purple{\underline{Given :}}

 \mathrm{Measures \: of \: the \: triangle \: 8m, \: 15m, \: 17m}.

\huge\mathcal\green{\underline{To\: Find:}}

\mathrm{Area \: and \: perimeter \: of \: the \: triangle.}

\huge\mathcal\blue{\underline{Sollution:}}

\mathrm{\underline{Let \: a = 8, \: b = 15, \: c = 17}}

\mathrm{perimeter  = a + b + c}

 \implies\mathrm{ 8 + 15 + 17}

 \implies\mathrm\red{\underline{ 40m}}

\mathrm{\underline{Area \: of \: triangle \: using \: herons \: formula,}}

\mathrm{s =  \frac{a + b + c}{2}  =  \frac{8 + 15 + 17}{2}  =  \frac{40}{2}}

\implies\mathrm{s = 20m}

\mathrm{now \: calculating \: area}

\mathrm{Area=  \sqrt{s(s - a)(s - b)(s - c)}}

\implies\mathrm{\sqrt{20(20 - 8)(20 - 15)(20 - 17)} }

\implies \mathrm{\sqrt{20(12)(5)(3)}}

\implies \mathrm{\sqrt{20(180)}}

\implies\mathrm{ \sqrt{3600}}

\implies\mathrm\red{\underline{60 \: m ^{2} }}

\mathrm\purple{therefore \: the \: perimeter \: is \: 40m \: and \: area \: is \: 60m^{2}}


Saby123: Nice !
Similar questions