Question for Only:- ❏ Moderators ❏ Brainly Stars ❏ Best users ✰ QUESTION ✰
(1 + cot theta + tan theta )(sin theta - cos theta) is equal to secant theta upon cosec squared theta minus cosec squared theta upon secant squared theta Prove it
Answers
Answered by
197
Given :-
- L.H.S = (1 + cotA + tanA)(sinA - CosA)
- R.H.S = SecA/Cosec²A - CosecA/sec²A
To Show :-
- Left hand side = Right hand side :-]
Solution :-
To show Left hand side is equal to Right hand side , at first we have to simplify L.H.S by applying trigonometry formula.
Calculation for L.H.S = R.H.S :-
⇒(1 + cotA + tanA)(sinA - CosA)
⇒(1 + CosA/sinA + sinA/cosA)(sinA - cosA)
⇒(sinA.cosA + cos²A + sin²/cosA.sinA)(sinA.cosA)
⇒(sinA.cosA + cos²A + sin²)×(sinA - cosA)/(sinA.cosA)
⇒sin³A - cos³A/sinA.cosA
⇒sin³A/sinA.cosA - cos³A/sinA.cosA
⇒ sin²A/cosA - cos²A/sinA
⇒ 1/cosA × sin²A - 1/sinA × cos²A
- 1/cosA = SecA. sinA = 1/cosecA
⇒ secA × 1/cosec²A - cosecA × 1/sec²A
⇒ SecA/cosec²A - cosecA/sec²A)
Hence, proved , L.H.S. = R.H.S
Anonymous:
Grêåt!
Answered by
74
Given :
To prove :
LHS=RHS
Solution :
Using
we get,
Now,on multiplying both terms
On simplifying ,we get
Now,using
We get,
Hence proved !
Similar questions