Math, asked by brainlytwinklestar, 12 hours ago

Question for Only:- ❏ Moderators ❏ Brainly Stars ❏ Best users ✰ QUESTION ✰
(1 + cot theta + tan theta )(sin theta - cos theta) is equal to secant theta upon cosec squared theta minus cosec squared theta upon secant squared theta Prove it​

Answers

Answered by mddilshad11ab
197

Given :-

  • L.H.S = (1 + cotA + tanA)(sinA - CosA)
  • R.H.S = SecA/Cosec²A - CosecA/sec²A

To Show :-

  • Left hand side = Right hand side :-]

Solution :-

To show Left hand side is equal to Right hand side , at first we have to simplify L.H.S by applying trigonometry formula.

Calculation for L.H.S = R.H.S :-

⇒(1 + cotA + tanA)(sinA - CosA)

⇒(1 + CosA/sinA + sinA/cosA)(sinA - cosA)

⇒(sinA.cosA + cos²A + sin²/cosA.sinA)(sinA.cosA)

⇒(sinA.cosA + cos²A + sin²)×(sinA - cosA)/(sinA.cosA)

⇒sin³A - cos³A/sinA.cosA

⇒sin³A/sinA.cosA - cos³A/sinA.cosA

⇒ sin²A/cosA - cos²A/sinA

⇒ 1/cosA × sin²A - 1/sinA × cos²A

  • 1/cosA = SecA. sinA = 1/cosecA

⇒ secA × 1/cosec²A - cosecA × 1/sec²A

⇒ SecA/cosec²A - cosecA/sec²A)

Hence, proved , L.H.S. = R.H.S


Anonymous: Grêåt!
mddilshad11ab: Thank you
Answered by GraceS
74

\sf\huge\bold{Answer:}

Given :

⇒(1 +  \cot \theta +  \tan  \theta)( \sin  \theta -  \cos \theta) =  \frac{ \sec \theta }{ \cosec {}^{2}  \theta }  -  \frac{ \cosec   \theta}{ \sec {}^{2}  \theta}

To prove :

LHS=RHS

Solution :

\fbox{LHS}

 = (1 +  \cot \theta +  \tan  \theta)( \sin  \theta -  \cos \theta)

Using

⇒ \cot( \alpha ) =  \frac{ \cos( \alpha ) }{ \sin( \alpha ) } \\   ⇒ \tan( \alpha )  =  \frac{ \sin( \alpha ) }{ \cos( \alpha ) }

we get,

 = (1 +  \frac{ \cos \theta }{ \sin \theta }  +  \frac{ \sin \theta }{ \cos \theta } )( \sin \theta -  \cos \theta)

Now,on multiplying both terms

 = ( \sin \theta  +  \cos \theta  +  \frac{ { \sin }^{2} \theta }{ \cos \theta }  -  \cos \theta -  \frac{ \cos {}^{2}  \theta }{ \sin \theta}   -  \sin \theta)

On simplifying ,we get

 =  \frac{ { \sin }^{2} \theta }{ \cos \theta }  -  \frac{ \cos {}^{2}  \theta }{ \sin \theta}

Now,using

⇒ \sin( \alpha ) =  \frac{1}{ \cosec( \alpha ) }  \\  ⇒ \cos( \alpha ) =  \frac{1}{ \sec( \alpha ) } \\   ⇒ \sin {}^{2} ( \alpha ) =  \frac{1}{ \cosec {}^{2} ( \alpha ) }  \\  ⇒ \cos {}^{2} ( \alpha ) =  \frac{1}{ \sec {}^{2} ( \alpha ) }

We get,

 =  \frac{ \sec \theta }{ \cosec {}^{2} \theta }  -  \frac{ \cosec \theta }{ \sec {}^{2}\theta  }

\fbox{RHS}

 =  \frac{ \sec \theta }{ \cosec {}^{2} \theta }  -  \frac{ \cosec \theta }{ \sec {}^{2}\theta  }

\boxed{ \boxed{LHS=RHS} }

Hence proved !


Anonymous: Supercalifragilisticexpialidocious!
Similar questions