Math, asked by itzzzcrusher3, 1 month ago

Question for Only:- ❏ Moderators ❏ Brainly Stars ❏ Best users ✰ABCD is a trapezium ab parallel to DC BFEC is the sector of circle with centre c.AB= BC is equal to 7 cm ,DEis equal to 4 cm find the area of shaded region​

Attachments:

Answers

Answered by abhi569
136

Answer:

28,9 cm²

Step-by-step explanation:

BC and EB, being the radius of the circle, are equal.  

        ∴ EB = BC = 7 cm     [given]

Draw ⊥ from B on EC  (height of the trapezium).

  Using trigonometry,

                   height = BC.sin60°

                   height = 7 * (√3/2)

                               = 3.5√5 cm

∴ Area of trapezium:

               ⇒ 1/2 * (sum of || sides) * h

               ⇒ 1/2 * (AB + DC) * h

               ⇒ 1/2 * (AB + DE + EC) * h

               ⇒ 1/2 * (7 + 4 + 7)*3.5√3

               ⇒ 31.5√3  cm²

∴ Area of circle(sector):

              ⇒ πr²(θ/360)  

              ⇒ π(BC)² (60/360)

              ⇒ (22/7) (7)² (1/6)

              ⇒ 25.6 cm²

Observing,

  Shaded area = area of trapezium - area of circle

 ⇒ Shaded area = 31.5√3 - 25.6 cm²

                     = (31.5 * 1.73) - 25.6 cm²

                     = 28.9 cm²

Attachments:
Answered by PopularANSWERER007
135

Required Question:-

In the figure,ABCD is a trapezium with AB||CD and ∠BCD = 60°. If BFEC is a sector of a circle with

centre C and AB = BC 7cm and DE = 4cm,then find the area of the shaded figure.

Given:-

  • Trapezium ABCD with AB||CD,
  • ∠BCD = 60°,
  • AB = BC = 7cm, and
  • DE = 4cm.

To Find:-

  • Area of shaded region.

Solution:-

Draw BL⊥CD.

BC = CE = 7cm (Radii of the sector)

So,DC = CE + DE = 7 + 4 = 11cm.

In right △ BLC,

Sin60° =  \frac{BL}{BC}   \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (∵sin\theta =  \frac{P}{H} )

=  >  \frac{ \sqrt{3} }{2}  =  \frac{BL}{7}

\therefore BL =  \frac{7 \sqrt{3} }{2}  =  \frac{7 \times 1.73}{2}  = 6.05cm

Area of trapezium ABCD

\:  \:  \:  \:  \:  \:  \:  =  \frac{1}{2}  \times ( AB + CD) \times BL

 =  \frac{1}{2}  \times (7 + 11) \times 6.05

= 9 \times 6.05 = 54.45cm {}^{2}

Area of sector BCEFB

 \:  \:  \:  \:  \:  \:  \:  =  \frac{\theta}{360°}  \times\pi  r {}^{2}

 =  \frac{60°}{360°}  \times \pi \times 7 {}^{2}

=  \frac{1}{6}  \times  \frac{22}{7}  \times 49

 = 25.66cm {}^{2}

Hence,Area of the shaded region

= Area of trapezium – Area of sector

= (54.45 – 25.66)cm {}^{2}

Answer:- = 28.79cm².

Attachments:
Similar questions