Math, asked by amritanshu6563, 10 months ago

Question for Samaritans​

Attachments:

Answers

Answered by amitnrw
9

(A+B)^2 = A^2 + B^2 + 2AB not verified as AB not equal to BA

Step-by-step explanation:

A = 1 2

3 4

A^2 = 1*1 + 2*3 1*2 + 2*4

3*1 + 4*3 3*2 + 4*4

A^2 = 7 10

15 22

B^2 = 13 24

24 45

AB = 8 15

18 33

A^2 + 2AB + B^2

36. 64

75. 133

A+ B = 3 5

6 10

(A+B)^2 = 39 65

78 130

not equal

hence not verified

but if we find BA

BA = 11 16

21 30

then A^2 + B^2 + AB + BA

=39 65

78 130

hence

(A+B)^2 = A^2 + B^2 + AB + BA

if AB = BA

then only

(A+B)^2 = A^2 + B^2 + 2AB

Answered by saounksh
3

ᴀɴsᴡᴇʀ

Here,

 A = [1 \:\: 2]

 \:\:\:\:\:\:\:\:\: [3 \:\:4]

 B = [2 \:\: 3]

 \:\:\:\:\:\:\:\:\:\:[3 \:\:6]

Now,

 (A+B)^2 = A^2 + 2AB + B^2

if  A^2 + AB +BA+ B^2

 \:\:\:\:\:= A^2 + 2AB + B^2

if  AB +BA =  2AB

if  BA =  2AB - AB

if  BA = AB

Thus it is sufficient to check if AB and BA are equal or not to verify the given equation.

So,

 AB = [1 \:\: 2] [2 \:\: 3]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[3 \:\:4] [3 \:\: 6]

 AB = [1\times 2 + 2 \times 3\:\:\: 1\times 3 + 2 \times 6]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[3\times 2 + 4 \times 3\:\:\: 3\times 3 + 4 \times 6]

 AB = [\:8 \:\:\: 15]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[18 \:\: 33]

 BA = [2 \:\:3][1 \:\: 2]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[3 \:\: 6][3 \:\:4]

 BA = [2\times 1 + 3 \times 3 \:\:\: 2\times 2 + 3 \times 4]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[3\times 1 + 6 \times 3\:\:\:3\times 2 + 6 \times 4]

 BA = [11 \:\: 16]

 \:\:\:\:\:\:\:\:\:\:\:\:\:[21 \:\:30]

It is clear that  AB ≠ BA. Hence it is verified that

 (A+B)^2 ≠ A^2 + 2AB + B^2

Similar questions